首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   30篇
  国内免费   1篇
测绘学   6篇
大气科学   43篇
地球物理   81篇
地质学   164篇
海洋学   26篇
天文学   67篇
综合类   5篇
自然地理   30篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   9篇
  2018年   16篇
  2017年   15篇
  2016年   16篇
  2015年   15篇
  2014年   13篇
  2013年   26篇
  2012年   16篇
  2011年   24篇
  2010年   23篇
  2009年   36篇
  2008年   22篇
  2007年   24篇
  2006年   20篇
  2005年   21篇
  2004年   17篇
  2003年   9篇
  2002年   12篇
  2001年   8篇
  2000年   11篇
  1999年   7篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
  1959年   1篇
排序方式: 共有422条查询结果,搜索用时 15 毫秒
41.
In this paper we report about a small region on the northern scarp of Olympus Mons showing an increase of the 3 μm hydration band in the OMEGA spectra, together with low superficial temperatures. Although water ice clouds can occurs on the flank of big martian volcanoes, radiative transfer modeling indicates that atmospheric water ice alone cannot justify the shape of the observed band. A fit of the 1.9–3 μm absorption features is obtained by hypothesizing that the study region consists of a mixture of dust and water ice covered by an optically thin (τ=0.08 at 3 μm) layer of dust. Thermal modeling also suggests that water ice in this region may be stable during most of the martian year due to the saturation of the atmosphere. If water ice is responsible for the observed spectral behavior, it might consist of a number of ice or snow patches possibly deposited in small depressions.  相似文献   
42.
Entrapped biogenic gas in peat can greatly affect peatland biogeochemical and hydrological processes by altering volumetric water content, peat buoyancy, and ‘saturated’ hydraulic conductivity, and by generating over‐pressure zones. These over‐pressure zones further affect hydraulic gradients which influence water and nutrient flow direction and rate. The dynamics of entrapped gas are of global interest because the loss of this gas to the atmosphere via ebullition (bubbling) is likely the dominant transport mechanism of methane (CH4) to the atmosphere from peatlands, which are the largest natural terrestrial source per annum of atmospheric CH4. We investigated the relationship between atmospheric pressure and temperature on volumetric gas content (VGC) and CH4 ebullition using a laboratory peat core incubation experiment. Peat cores were incubated at three temperatures (one core at 4 °C, three cores at 11 °C, and one core at 20 °C) in sealed PVC cylinders, instrumented to measure VGC, pore‐water CH4 concentrations, and ebullition (volume and CH4 concentrations). Ebullition events primarily occurred (71% of the time) during periods of falling atmospheric pressure. The duration of the drop in atmospheric pressure had a larger control on ebullition volume than the magnitude of the drop. VGC in the 20 °C core increased from the onset of the experiment and reached a fluctuating but time‐averaged constant level between experiment day 30 and 115. The change in VGC was low for the 11 °C cores for the initial period of the experiment but showed large increases when the growth chamber temperature increased to 20 °C due to a malfunction. The core maintained at 4 °C showed only a small increase in entrapped gas content throughout the experiment. The 20 °C core showed the largest increase in VGC. The increases in VGC occurred despite pore‐water concentrations of CH4 being below the equilibrium solubility level. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
43.
44.
Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 μm (2343.3 cm−1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule’s nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ∼4.255 μm (∼2350.2 cm−1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe’s CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior.The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 μm, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 μm centered on 4.28 μm. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper.  相似文献   
45.
The International Council for the Exploration of the Sea (ICES) noted the risks associated with uncontrolled species introductions and transfers more than 40 years ago and launched two working groups to address the issue, i.e. the ICES Working Group on Introductions and Transfers of Marine Organisms (WGITMO) to deal with the movement of non-indigenous species for e.g. aquaculture purposes and the ICES/IOC/IMO Working Group on Ballast and Other Ship Vectors which focuses on species movements with ships. Both groups are actively working until today and the key achievements of the groups are outlined.  相似文献   
46.
Detailed knowledge of the extent of post-genetic modifications affecting shallow submarine hydrocarbons fueled from the deep subsurface is fundamental for evaluating source and reservoir properties. We investigated gases from a submarine high-flux seepage site in the anoxic Eastern Black Sea in order to elucidate molecular and isotopic alterations of low-molecular-weight hydrocarbons (LMWHC) associated with upward migration through the sediment and precipitation of shallow gas hydrates. For this, near-surface sediment pressure cores and free gas venting from the seafloor were collected using autoclave technology at the Batumi seep area at 845 m water depth within the gas hydrate stability zone.Vent gas, gas from pressure core degassing, and from hydrate dissociation were strongly dominated by methane (> 99.85 mol.% of ∑[C1–C4, CO2]). Molecular ratios of LMWHC (C1/[C2 + C3] > 1000) and stable isotopic compositions of methane (δ13C = ? 53.5‰ V-PDB; D/H around ? 175‰ SMOW) indicated predominant microbial methane formation. C1/C2+ ratios and stable isotopic compositions of LMWHC distinguished three gas types prevailing in the seepage area. Vent gas discharged into bottom waters was depleted in methane by > 0.03 mol.% (∑[C1–C4, CO2]) relative to the other gas types and the virtual lack of 14C–CH4 indicated a negligible input of methane from degradation of fresh organic matter. Of all gas types analyzed, vent gas was least affected by molecular fractionation, thus, its origin from the deep subsurface rather than from decomposing hydrates in near-surface sediments is likely.As a result of the anaerobic oxidation of methane, LMWHC in pressure cores in top sediments included smaller methane fractions [0.03 mol.% ∑(C1–C4, CO2)] than gas released from pressure cores of more deeply buried sediments, where the fraction of methane was maximal due to its preferential incorporation in hydrate lattices. No indications for stable carbon isotopic fractionations of methane during hydrate crystallization from vent gas were found. Enrichments of 14C–CH4 (1.4 pMC) in short cores relative to lower abundances (max. 0.6 pMC) in gas from long cores and gas hydrates substantiates recent methanogenesis utilizing modern organic matter deposited in top sediments of this high-flux hydrocarbon seep area.  相似文献   
47.
In public debate surrounding climate change, scientific uncertainty is often cited in connection with arguments against mitigative action. This article examines the role of uncertainty about future climate change in determining the likely success or failure of mitigative action. We show by Monte Carlo simulation that greater uncertainty translates into a greater likelihood that mitigation efforts will fail to limit global warming to a target (e.g., 2 °C). The effect of uncertainty can be reduced by limiting greenhouse gas emissions. Taken together with the fact that greater uncertainty also increases the potential damages arising from unabated emissions (Lewandowsky et al. 2014), any appeal to uncertainty implies a stronger, rather than weaker, need to cut greenhouse gas emissions than in the absence of uncertainty.  相似文献   
48.
This paper presents the results of the analysis of long range propagation (~200 km) in a range-dependent environment. The propagation medium is characterized by two deep sound channels. The range dependence enables energy transfer between the channels and leads to a mismatch between real data and ray predictions. To explain this mismatch, an analysis of hybrid ray propagation is presented. This analysis is completed by an interpretation in terms of chaos. This chaos is quantified in the particular case of the Bay of Biscay environment. This paper puts forward that mesoscale perturbations, such as the Mediterranean outflow in the North Atlantic, can affect long-range propagation. However, it shows that the ray theory remains reliable for a propagation range of several hundred kilometers  相似文献   
49.
ABSTRACT Palaeoceanographic reconstructions from the North Atlantic indicate massive ice breakouts from East Greenland near the onset of cold Dansgaard–Oeschger (D–O) stadials. In contrast to these coolings in the North Atlantic area, a new sea-surface temperature record reveals concomitant warm spells in the northern North Pacific. A sensitivity experiment with an atmospheric general circulation model is used to test the potential impact of sea-surface warmings by 3.5 °C in the North Pacific, on top of otherwise cold stadial climate conditions, on the precipitation regime over the Northern Hemisphere ice sheets. The model predicts a maximum response over East Greenland and the Greenland Sea, where a 40% increase in net annual snow accumulation occurs. This remote effect of North Pacific warm spells on the East Greenland snow-accumulation rate may play an important role in generating D–O cycles by rebuilding the ice lost during ice breakouts. In addition, the increased precipitation over the Greenland Sea may help to sustain the D–O stadial climate state.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号