首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   0篇
测绘学   1篇
地球物理   10篇
地质学   4篇
海洋学   3篇
天文学   57篇
自然地理   1篇
  2019年   2篇
  2015年   2篇
  2013年   7篇
  2012年   7篇
  2011年   2篇
  2010年   5篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   8篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有76条查询结果,搜索用时 0 毫秒
71.
The motivation for considering distributed large scale dynamos in the solar context is reviewed in connection with the magnetic helicity constraint. Preliminary accounts of 3-dimensional direct numerical simulations (in spherical shell segments) and simulations of 2-dimensional mean field models (in spherical shells) are presented. Interesting similarities as well as some differences are noted. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
72.
Numerical simulations of turbulent stratified convection are used to study models with approximately the same convective flux, but different radiative fluxes. As the radiative flux is decreased, for constant convective flux: the entropy jump at the top of the convection zone becomes steeper, the temperature fluctuations increase and the velocity fluctuations decrease in magnitude, and the distance that low entropy fluid from the surface can penetrate increases. Velocity and temperature fluctuations follow mixing length scaling laws. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
73.
We introduce on/off intermittency into a mean field dynamo model by imposing stochastic fluctuations in either the alpha effect or through the inclusion of a fluctuating electromotive force. Sufficiently strong small scale fluctuations with time scales of the order of 0.3–3 years can produce long term variations in the system on time scales of the order of hundreds of years. However, global suppression of magnetic activity in both hemispheres at once was not observed. The variation of the magnetic field does not resemble that of the sunspot number, but is more reminiscent of the 10Be record. The interpretation of our results focuses attention on the connection between the level of magnetic activity and the sunspot number, an issue that must be elucidated if long term solar effects are to be well understood. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
74.
The role of shear in alleviating catastrophic quenching by shedding small‐scale magnetic helicity through fluxes along contours of constant shear is discussed. The level of quenching of the dynamo effect depends on the quenched value of the turbulent magnetic diffusivity. Earlier estimates that might have suffered from the force‐free degeneracy of Beltrami fields are now confirmed for shear flows where this degeneracy is lifted. For a dynamo that is saturated near equipartition field strength those estimates result in a 5‐fold decrease of the magnetic diffusivity as the magnetic Reynolds number based on the wavenumber of the energy‐carrying eddies is increased from 2 to 600. Finally, the role of shear in driving turbulence and large‐scale fields by the magneto‐rotational instability is emphasized. New simulations are presented and the 3π /4 phase shift between poloidal and toroidal fields is confirmed. It is suggested that this phase shift might be a useful diagnostic tool in identifying mean‐field dynamo action in simulations and to distinguish this from other scenarios invoking magnetic buoyancy as a means to explain migration away from the midplane. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
75.
Two constraints placed upon the cratering flux at Mars by the SNC meteorites are examined: crystallization ages as a constraint on surface ages and cosmic ray exposure ages and number of impacts as a constraint on absolute rates. The crystallization ages of the SNC meteorites appear to constrain the Martian cratering rate to be 4xLunar or more if the parent lavas are in the north of Mars and the number of SNC ejecting impacts are small. If the SNCs result from a single impact that formed the Lyot basin then the cratering rate must be at least 7xLunar or higher to produce a basin age less than the SNC crystallization age because the basin ages are themselves determined by crater counting. Assuming multiple uncorrelated impacts for SNC ejection from Mars over 10 million years a cratering rate of approximately 4xLunar is also found for ejecting impacts that form craters over 12km in diameter. Therefore, both crystallization ages and ejection ages and number of impacts appear consistent with a 4xLunar cratering rate at Mars. The effect on Martian chronologies of such a high cratering rate is to place the SNC crystallization ages partly within the epoch of channel formation on Mars and to extend this liquid water epoch over much of Mars history.  相似文献   
76.
Motivated by new observations of solar surface flow patterns of mesogranulation, theoretical computations of the horizontal divergence-vorticity correlation are presented. Because of its close relation to the helicity in rotating turbulence such observations and discussions are of particular importance for the conventional dynamo theory. For the northern hemisphere we find a small, but always negative, divergence-vorticity correlation. Both an analytical Second Order Correlation Approximation for slow rotation as well as a numerical simulation (originally done for accretion disks) for fast rotation yield very similar results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号