首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   5篇
地球物理   8篇
地质学   20篇
海洋学   5篇
天文学   51篇
自然地理   2篇
  2023年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2013年   5篇
  2011年   4篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   6篇
  1994年   1篇
  1993年   4篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有86条查询结果,搜索用时 718 毫秒
31.
32.
Abstract— A detailed analysis of the reflectance spectrum of asteroid 3628 Bo?němcová, previously identified as a possible ordinary chondrite parent body, indicates that its surface consists of an assemblage dominated by clinopyroxene and plagioclase feldspar. The clinopyroxene is Fe2+‐bearing (likely in the range Fs?10–20), with >90% of the Fe2+ being present in the M1 crystallographic site (spectral type A). The clinopyroxene:plagioclase feldspar ratio is between ?2 and 3 (?55–75% clinopyroxene, ?20–33% plagioclase feldspar). If olivine is present, the clinopyroxene:olivine ratio is >?3 (<20% olivine). The derived mineralogy of Bo?němcová is most similar, but not identical, to the known angrite meteorites. The data suggest that Bo?němcová formed by melting and differentiation of an oxidized chondritic precursor and probably represents an unsampled angrite‐like body.  相似文献   
33.
We report analyses of 14 group IVA iron meteorites, and the ungrouped but possibly related, Elephant Moraine (EET) 83230, for siderophile elements by laser ablation ICP-MS and isotope dilution. EET was also analyzed for oxygen isotopic composition and metallographic structure, and Fuzzy Creek, currently the IVA with the highest Ni concentration, was analyzed for metallographic structure. Highly siderophile elements (HSE) Re, Os and Ir concentrations vary by nearly three orders of magnitude over the entire range of IVA irons, while Ru, Pt and Pd vary by less than factors of five. Chondrite normalized abundances of HSE form nested patterns consistent with progressive crystal-liquid fractionation. Attempts to collectively model the HSE abundances resulting from fractional crystallization achieved best results for 3 wt.% S, compared to 0.5 or 9 wt.% S. Consistent with prior studies, concentrations of HSE and other refractory siderophile elements estimated for the bulk IVA core and its parent body are in generally chondritic proportions. Projected abundances of Pd and Au, relative to more refractory HSE, are slightly elevated and modestly differ from L/LL chondrites, which some have linked with group IVA, based on oxygen isotope similarities.Abundance trends for the moderately volatile and siderophile element Ga cannot be adequately modeled for any S concentration, the cause of which remains enigmatic. Further, concentrations of some moderately volatile and siderophile elements indicate marked, progressive depletions in the IVA system. However, if the IVA core began crystallization with ∼3 wt.% S, depletions of more volatile elements cannot be explained as a result of prior volatilization/condensation processes. The initial IVA core had an approximately chondritic Ni/Co ratio, but a fractionated Fe/Ni ratio of ∼10, indicates an Fe-depleted core. This composition is most easily accounted for by assuming that the surrounding silicate shell was enriched in iron, consistent with an oxidized parent body. The depletions in Ga may reflect decreased siderophilic behavior in a relatively oxidized body, and more favorable partitioning into the silicate portion of the parent body.Phosphate inclusions in EET show Δ17O values within the range measured for silicates in IVA iron meteorites. EET has a typical ataxitic microstructure with precipitates of kamacite within a matrix of plessite. Chemical and isotopic evidence for a genetic relation between EET and group IVA is strong, but the high Ni content and the newly determined, rapid cooling rate of this meteorite show that it should continue to be classified as ungrouped. Previously reported metallographic cooling rates for IVA iron meteorites have been interpreted to indicate an inwardly crystallizing, ∼150 km radius metallic body with little or no silicate mantle. Hence, the IVA group was likely formed as a mass of molten metal separated from a much larger parent body that was broken apart by a large impact. Given the apparent genetic relation with IVA, EET was most likely generated via crystal-liquid fractionation in another, smaller body spawned from the same initial liquid during the impact event that generated the IVA body.  相似文献   
34.
Hypoxic conditions (dissolved oxygen (DO)<2 mg l−1) have been documented in the nearshore coastal waters of Long Bay, South Carolina, United States of America, during summer months over the past several years. Hypoxia was documented in August 2009 in the nearshore (<500 m offshore) for ten consecutive days and four days in September 2009 corresponding with spring tides. This study measured radon activities of shallow beachface groundwater and nearshore bottom waters to estimate mixing rates and submarine groundwater discharge (SGD) in the nearshore waters of central Long Bay. Statistical analyses demonstrate significant correlations between high bottom water radon activities, low DO, and cooler bottom water temperatures during hypoxic conditions. Elevated radon activities during hypoxia were significantly influenced by upwelling favorable conditions which severely limited cross-shelf mixing. Model results indicate mixing of nearshore and offshore waters was limited by up to 93% (range: 43-100%) relative to non-hypoxic conditions. Data suggests previously overlooked natural phenomena including limited cross-shelf mixing and SGD can significantly influence nearshore water quality.  相似文献   
35.
Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock‐forming elements. From a circular, polar low‐altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole‐rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg‐rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine‐rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.  相似文献   
36.
MESSENGER Neutron Spectrometer (NS) observations of cosmic-ray-generated thermal neutrons provide the first direct measurements of Mercury’s surface elemental composition. Specifically, we show that Mercury’s surface is enriched in neutron-absorbing elements and has a measured macroscopic neutron-absorption cross section of 45-81 × 10−4 cm2/g, a range similar to the neutron absorption of lunar basalts from Mare Crisium. The expected neutron-absorbing elements are Fe and Ti, with possible trace amounts of Gd and Sm. Fe and Ti, in particular, are important for understanding Mercury’s formation and how its surface may have changed over time through magmatic processes. With neutron Doppler filtering - a neutron energy separation technique based on spacecraft velocity - we demonstrate that Mercury’s surface composition cannot be matched by prior models, which have characteristically low abundances of Fe, Ti, Gd, and Sm. While neutron spectroscopy alone cannot separate the relative contributions of individual neutron-absorbing elements, these results provide strong new constraints on the nature of Mercury’s surface materials. For example, if all the measured neutron absorption were due to the presence of an Fe-Ti oxide and that oxide were ilmenite, then Mercury’s surface would have an ilmenite content of 7-18 wt.%. This result is in general agreement with the inference from color imaging and visible-near-infrared spectroscopy that Mercury’s overall low reflectance is consistent with a surface composition that is enriched in Fe-Ti oxides. The incorporation of substantial Fe and Ti in oxides would imply that the oxygen fugacity of basalts on Mercury is at the upper range of oxygen fugacities inferred for basalts on the Moon.  相似文献   
37.
Areas of lunar surface magnetic field are observed to ‘mirror’ low energy electrons present in the normal lunar space environment. The ambient electrons provide, in effect, a probe along the ambient magnetic field lines down to the lunar surface for remote sensing of the presence of surface fields. This probe, unlike direct measurement by the magnetometer, does not require low altitude or a very stable (magnetotail) ambient field to provide a mapping of regions of occurrence of such fields. Use of the on-board vector magnetometer measurements of the ambient magnetic field orientation allows accurate projection of such mapping onto the lunar surface. Preliminary maps of the lunar surface magnetic areas underlying the orbit of the ‘Particles and Fields Satellite deployed from Apollo-16’ have been generated, obtaining 40% coverage from partial data to demonstrate feasibility of the technique. As well as providing independent verification of areas such as Van de Graaff already discovered in the magnetometer data, these maps reveal many previously unreported areas of surface magnetism. The method is sensitive to fields of less than 0.1γ at the surface. Application to the full body of available PFS-1 & 2 electron data is expected to provide complete mapping of the lunar surface for areas of magnetization up to latitudes of 35–40 deg. The surface field regions observed are generally due to sources smaller than 10–50 km in size, although many individual regions are often so close together as to give much larger regions of effectively continuous mirroring. Absence of consistent mirroring by any global field places an upper limit on the size of any net lunar dipole moment of less than 1010 γ km3. Much additional information regarding the magnetic regions can be obtained by correlated analysis of both the electron return and vector magnetometer measurements at orbital altitude, the two techniques providing each other with directly complimentary measurements at the satellite and along the ambient field lines to the surface.  相似文献   
38.
Analyses of carbon and hydrogen isotope ratios of terrestrial leaf waxes and the carbon and nitrogen abundance, ratio, and isotopic composition of bulk sediments from Lake Wandakara, a crater lake in western Uganda, East Africa, document human and climatic controls on the aquatic system and on the surrounding terrestrial vegetation during the past two millennia. Our data indicate that Wandakara was a relatively stable, productive lake surrounded by C3 vegetation from AD 70 to 1000. Abrupt changes in the δ13C of terrestrial leaf waxes indicate a series of abrupt shifts in the relative abundance of C3 and C4 vegetation caused by a combination of climate change and human activities around Wandakara beginning at AD 1000. Abrupt shifts in bulk sediment organic geochemistry, particularly C/N ratios and δ15N, indicate that human activities at this time caused permanent changes in the limnology of Lake Wandakara, including eutrophication. Our results suggest that the biogeochemistry of Lake Wandakara was more sensitive to shifting human impacts than to climate variations during the past millennium, highlighting the importance of understanding the intensity of pre-colonial human impacts on Africa's aquatic ecosystems.  相似文献   
39.
Abstract The Lueders iron meteorite with silicate inclusions was recovered as a single specimen of ~35.4 kg in Shackelford County, Texas, in 1973 and recognized as a meteorite in 1993. Siderophile element concentrations indicate chemical classification as a low-Ni IAB iron meteorite closely related to Landes; like Landes, it has a Cu content ~4σ above the main IAB-IIICD trend and therefore we also designate Lueders as an anomalous member of IAB. The metallic host is composed of equigranular kamacite but with a suggestion of octahedral structure and with a bandwidth of 1.4 mm, suggesting structural classification as a coarse octahedrite (Og). The meteorite contains ~23 wt% of roughly millimeter to centimeter-sized angular silicate inclusions. Classification as a IAB is confirmed by O isotopic analysis of silicate inclusions. These inclusions contain an assemblage rich in silicates, troilite and graphite; lack certain minor phases (e.g., daubreelite); and have angular shapes. A variety of processes (e.g., fragmentation, partial melting, reduction) appear to have played a significant role in the formation of Lueders and all IAB iron meteorites. Petrologic and chemical differences confirm that Lueders is not paired with the widely distributed Odessa meteorite.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号