首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   28篇
地质学   33篇
海洋学   10篇
天文学   45篇
综合类   1篇
自然地理   4篇
  2021年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2014年   8篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   12篇
  2009年   4篇
  2008年   11篇
  2007年   7篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   4篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
121.
The Japanese National Large Telescope (JNLT) requires mechanical performance of high tracking accuracy to achieve good image quality and a mechanical configuration to provide several kinds of focus modes. Under these requirements, a conceptual design for the JNLT mechanical structure has been performed. This paper presents the results of the conceptual design currently under consideration.Paper presented at the symposium on the JNLT and Related Engineering Developments, Tokyo, November 29–December 2, 1988.  相似文献   
122.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
123.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
124.
To evaluate water use and the supporting water source of a tropical rainforest, a 4‐year assessment of evapotranspiration (ET) was conducted in Pasoh Forest Reserve, a lowland dipterocarp forest in Peninsular Malaysia. The eddy covariance method and isotope signals of rain, plant, soil, and stream waters were used to determine forest water sources under different moisture conditions. Four sampling events were conducted to collect soil and plant twig samples in wet, moderate, dry, and very dry conditions for the identification of isotopic signals. Annual ET from 2012 to 2015 was quite stable with an average of 1,182 ± 26 mm, and a substantial daily ET was observed even during drought periods, although some decline was observed, corresponding with volumetric soil water content. During the wet period, water for ET was supplied from the surface soil layer between 0 and 0.5 m, whereas in the dry period, approximately 50% to 90% was supplied from the deeper soil layer below 0.5‐m depth, originating from water precipitated several months previously at this forest. Isotope signatures demonstrated that the water sources of the plants, soil, and stream were all different. Water in plants was often different from soil water, probably because plant water came from a different source than water that was strongly bound to the soil particles. Plants showed no preference for soil depth with their size, whereas the existence of storage water in the xylem was suggested. The evapotranspiration at this forest is balanced and maintained using most of the available water sources except for a proportion of rapid response run‐off.  相似文献   
125.
High‐precision oxygen three‐isotope ratios were measured for four mineral phases (olivine, low‐Ca and high‐Ca pyroxene, and plagioclase) in equilibrated ordinary chondrites (EOCs) using a secondary ion mass spectrometer. Eleven EOCs were studied that cover all groups (H, L, LL) and petrologic types (4, 5, 6), including S1–S4 shock stages, as well as unbrecciated and brecciated meteorites. SIMS analyses of multiple minerals were made in close proximity (mostly <100 μm) from several areas in each meteorite thin section, to evaluate isotope exchange among minerals. Oxygen isotope ratios in each mineral become more homogenized as petrologic type increases with the notable exception of brecciated samples. In type 4 chondrites, oxygen isotope ratios of olivine and low‐Ca pyroxene are heterogeneous in both δ18O and Δ17O, showing similar systematics to those in type 3 chondrites. In type 5 and 6 chondrites, oxygen isotope ratios of the four mineral phases plot along mass‐dependent fractionation lines that are consistent with the bulk average Δ17O of each chondrite group. The δ18O of three minerals, low‐Ca and high‐Ca pyroxene and plagioclase, are consistent with equilibrium fractionation at temperatures of 700–1000 °C. In most cases the δ18O values of olivine are higher than those expected from pyroxene and plagioclase, suggesting partial retention of premetamorphic values due to slower oxygen isotope diffusion in olivine than pyroxene during thermal metamorphism in ordinary chondrite parent bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号