首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   3篇
  国内免费   3篇
测绘学   1篇
大气科学   5篇
地球物理   56篇
地质学   42篇
海洋学   29篇
天文学   34篇
综合类   4篇
自然地理   6篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   17篇
  2012年   5篇
  2011年   7篇
  2010年   10篇
  2009年   11篇
  2008年   6篇
  2007年   9篇
  2006年   9篇
  2005年   4篇
  2004年   14篇
  2003年   10篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1983年   1篇
  1981年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有177条查询结果,搜索用时 31 毫秒
111.
112.
113.
Abstract

A standard approach to the kinematic dynamo problem is that pioneered by Bullard and Gellman (1954), which utilizes the toroidal-poloidal separation and spherical harmonic expansion of the magnetic and velocity fields. In these studies, the velocity field is given as a combination of small number of toroidal and poloidal harmonics, with their radial dependences prescribed by some physical considerations. Starting from the original paper of Bullard and Gellman (1954), a number of authors repeated such analyses on different combination of velocity fields, including the most recent and comprehensive effort by Dudley and James (1989). In this paper, we re-examine the previous kinematic dynamo models, using the computer algebra approach initiated by Kono (1990). This method is particularly suited to this kind of research since different velocity fields can be treated by a single program. We used the distribution of magnetic energies in various harmonics to infer the convergence of the results.

The numerical results obtained in this study for the models of Bullard and Gellman (1954), Lilley (1970), Gubbins (1973), Pekeris et al. (1973), Kumar and Roberts (1975), and Dudley and James (1989) are consistent with the previously reported results, in particular, with the extensive calculation of Dudley and James. In addition, we found that the combination of velocities used by Lilley can support the dynamo action if the radial dependence of the velocity is modified.

We also examined the helicity distributions in these dynamo models, to see if there is any correlation between the helicity and the efficiency of dynamo action. A successful dynamo can result both from the cases in which the helicity distributions are symmetric or antisymmetric with respect to the equator. In both cases, it appears that the dynamo action is efficient if the volume integral of helicity over a hemisphere is large.  相似文献   
114.
High-time resolution 14C dating of Lake Baikal sediment cores indicates negative and positive anomalies of calculated linear sedimentation rate (LSR; 1.1 and 35.6 cm/ka, respectively) during the period of climate transition from the last glacial to Holocene. The timing of the Lake Baikal apparent LSR anomalies is consistent with that of the changes in the atmospheric radiocarbon concentration (Δ14C) during Younger Dryas rapid cooling event. 14C dating of lipids in the Lake Baikal surface sediments revealed that the sources of sedimentary lipids were different in each basin. In the Northern Basin of Lake Baikal, the 14C age of total lipids from the surface sediment (4.0 14C ka) was found to be older than that of TOC (1.6 14C ka). By contrast, the 14C age of total lipids in the Southern Basin was younger than that of the TOC by ca. 0.7–3.0 ka.In the Lake Hovsgol sediment cores, ages of the main lithologic boundaries during the last glacial–interglacial transition were estimated based on new 14C data sets. TOC concentration in the cores started to rapidly increase at 13.8 ± 0.3 14C ka at the base of the basinwide finely laminated layer deposited during Bølling/Allerød. The base of the layer diatomaceous mud corresponds to the end of Younger Dryas event (10.6 ± 0.1 14C ka).  相似文献   
115.
Effect of the various concentrations of NaCl and CaCl2 on the four different soil-bentonite mixtures has been evaluated. The results show that the liquid limit of the mixtures decreases with an increase in the salt concentration. Liquid limit decreased significantly with an increase in CaCl2 concentration from 0 to 0.1 N. However, a further increase in the concentration did not produce any significant decrease in liquid limit. A quite opposite trend was observed for the NaCl solution. An increase in NaCl concentration from 0 to 0.1 N did not produce any major decrease in the liquid limit, but a further increase in concentration from 0.1 to 1 N decreased the liquid limit significantly. Consolidation tests were carried out on the mixtures to evaluate the effect of mineralogical composition of the bentonite on the hydraulic conductivity (k) of the mixture in the presence of various salts concentrations. The k for any mixtures was found to be decreasing with decrease in the salt concentration. At relatively low concentration, Ca2+ had more effect on the k in comparison to the same concentration of Na+. However, at 1 N of NaCl and CaCl2 almost an equal value of k was observed. A comparison of the performance of four bentonites showed that the mixture with bentonite having highest exchangeable sodium percentage (ESP) exhibited the lowest k when permeated with de-ionized (DI) water, however, k increased with an increase in the salt concentration. Similarly, mixture with a bentonite of lower ESP exhibited a higher k with DI water but with the increase in the salt concentration alteration in the k, compared to all other mixtures, was relatively less.  相似文献   
116.
Abstract The upper Mesozoic Tetori Group contains numerous fossils of plants and marine and non‐marine animals. The group has the potential to provide key information to improve our understanding of the Middle Jurassic to Early Cretaceous biota of East Asia. However, the depositional age of the Tetori Group remains uncertain, and without good age constraints, accurate correlation with other areas is very difficult. As a first step in obtaining reliable ages for the formations within the Tetori Group, we used laser ablation‐inductively coupled plasma–mass spectrometry to measure the U–Pb ages of zircons collected from tuff beds in the Shokawa district, Takayama City, Gifu Prefecture, central Japan. The youngest reliable U–Pb ages from the tuff beds of the Ushimaru, Mitarai and Okurodani Formations are 130.2 ± 1.7, 129.8 ± 1.0 and 117.5 ± 0.7 Ma, respectively (errors represent 2 SE). These results indicate that the entire Tetori Group in the Shokawa district, which was previously believed to be correlated to the Upper Jurassic to Lower Cretaceous, is in fact correlated to the Lower Cretaceous. The maximum ages of the Ushimaru, Mitarai and Okurodani Formations are late Hauterivian to Barremian, late Hauterivian to Barremian and Barremian to Aptian, respectively.  相似文献   
117.
K-Ar ages were measured on Quaternary polygenetic and monogenetic volcanoes in the Higashi-Izu region, Izu peninsula, central Japan, using the unspiked sensitivity method with mass-fractionation correction procedure to investigate when eruptive style changed, whether a hiatus existed between the two types of eruptive activity, and the effect of tectonics on the change in eruptive style. The K-Ar ages range from 0.3-0.08 Ma for monogenetic volcanoes and from 1.8-0.2 Ma for polygenetic volcanoes; thus, no volcanic hiatus was found between the two types of eruptive styles. The transition from polygenetic to monogenetic volcanism occurred during a time of overlap between 0.3 and 0.2 Ma, after collision of the Izu block (the future Izu peninsula) with central Japan, estimated as 1.0-0.8 Ma by previous researchers. Based on the review of several tectonic models of the area, the measured age of transition in eruptive style is interpreted to correspond to the change in the stress field of the Higashi-Izu region.  相似文献   
118.
Pyroclastic flows from the 1991 eruption of Unzen volcano,Japan   总被引:1,自引:0,他引:1  
Pyroclastic flows from Unzen were generated by gravitational collapse of the growing lava dome. As soon as the parental lobe failed at the edge of the dome, spontaneous shattering of lava occurred and induced a gravity flow of blocks and finer debris. The flows had a overhanging, tongue-like head and cone- or rollershaped vortices expanding outward and upward. Most of the flows traveled from 1 to 3 km, but some flows reached more than 4 km, burning houses and killing people in the evacuated zone of Kita-kamikoba on the eastern foot of the volcano. The velocities of the flows ranged from 15 to 25 m/s on the gentle middle flank. Observations of the flows and their deposits suggest that they consisted of a dense basal avalanche and an overlying turbulent ash cloud. The basal avalanche swept down a topographic low and formed to tongue-like lobe having well-defined levees; it is presumed to have moved as a non-Newtonian fluid. The measured velocities and runout distances of the flows can be matched to a Bingham model for the basal avalanche by the addition of turbulent resistance. The rheologic model parameters for the 29 May flow are as follows: the density is 1300 kg/m3, the yield strength is 850 Pa, the viscosity is 90 Pa s, and the thickness of the avalanche is 2 m. The ash cloud is interpreted as a turbulent mixing layer above the basal avalanche. The buoyant portions of the cloud produced ash-fall deposits, whereas the dense portions moved as a surge separated from the parental avalanche. The ash-cloud surges formed a wide devastated zone covered by very thin debris. The initial velocities of the 3 June surges, when they detached from avalanches, are determined by the runout distance and the angle of the energy-line slope. A comparison between the estimated velocities of the 3 June avalanches and the surges indicates that the surges that extended steep slopes along the avalanche path, detached directly from the turbulent heads of the avalanches. The over-running surge that reached Kita-Kamikoba had an estimated velocity higher than that of the avalanche; this farther-travelled surge is presumed to have been generated by collapse of a rising ash-cloud plume.  相似文献   
119.
The compressed air energy storage(CAES) is a much-awaited new system for load leveling power supply. An economical system must be developed, preventing leakage of stored air (with pressures of more than 20 atm) using groundwater pressure surrounding an unlined cavern in hard rock. The air tightness of the rock around the cavern must be confirmed. In this study, the hydrogeology of the test site was examined prior to field air tightness tests in the borehole. The results indicate that, when evaluating the hydrogeology of the test site related to the air tightness of rocks, it is necessary to understand the geological structure and fracture characteristics of the site. This is done by means of a field survey, investigations and tests in and between the boreholes, and the examination of the distribution of permeability and pore water pressures.  相似文献   
120.
Experiments were conducted to estimate heaving pressures of saturated soil partially frozen in a closed system. Temperatures at both ends of a specimen were kept constant, i.e., positive at the top and negative at the bottom. When the overburden pressure P was maintained at a constant value, the pore-water pressure Pw, which showed a certain value before freezing, decreased gradually as freezing progressed, finally attaining a specific value, whereafter the specimen ceased taking water into it. The pressure difference between P and Pw, at this stage was defined as the upper limit of heaving pressure σu, which evidently depended on the temperature θc of the cooling end, in accordance with the relation: σu = −11.4 θc (kg/cm2)

It corresponds to the modified Clausius-Clapeyron's formula, which gives the freezingpoint depression of an ice—water system, where the pressure acting on the ice differs from that on the water. This is the same as the value obtained by Radd and Oertle (1973). It is considered, however, that, when θc lowers, the value of θu reaches finally a constant value smaller than the one obtained by the above equation. Denoted by σu max, it was defined as a maximum heaving pressure. The value of σu max depended on soil type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号