首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
天文学   43篇
  2011年   2篇
  2004年   1篇
  2001年   1篇
  1990年   1篇
  1987年   2篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   3篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
21.
A large long-lived soft X-ray emitting arch system was observed during the last Skylab mission. This arcade stayed in the same approximate position for several solar rotations. We suggest that these long-lived arches owe their stability to the stable coronal magnetic-field configuration. A global constant force-free magnetic field analysis, as developed by Nakagawaet al. (1977), is used to describe the arches, and results in a marked resemblance between the theoretical magnetic-field configuration and the observed X-ray emitting feature.  相似文献   
22.
23.
The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design, performance, and modes of operation. The instrument operates in the wavelength range 1150–3600 Å with better than 2 arc sec spatial resolution, raster range 256 × 256 arc sec2, and 20 mÅ spectral resolution in second order. Observations can be made with specific sets of 4 lines simultaneously, or with both sides of 2 lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere.Currently at MMTO, University of Arizona, Tucson, Ariz. 85721, U.S.A.  相似文献   
24.
A quiescent prominence observed above the north-west limb on November 20, 1980, is analyzed using data obtained with the Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM). The spectral data include the lines 1215 Å of Hi, 1401 Å of Oiv, 1402 Å of Siiv, 1548 Å of Civ, 1640 Å of Hei, and 1655 Å of Ci. From an analysis of these lines and their emission patterns we deduce physical characteristics of the prominence plasma, and suggest in particular that the prominence consisted of flux tubes at various temperatures. In the hotter parts of the plasma the number density reached values of about 3 × 1011 cm#X2212;3.  相似文献   
25.
26.
Analysis of observations from both space-borne (LASCO/SOHO, Skylab and Solar Maximum Mission) and ground-based (Mauna Loa Observatory) instruments show that there are two types of coronal mass ejections (CMEs), fast CMEs and slow CMEs. Fast CMEs start with a high initial speed, which remains more or less constant, while slow CMEs start with a low initial speed, but show a gradual acceleration. To explain the difference between the two types of CMEs, Low and Zhang (2002) proposed that it resulted from a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences, i.e., a normal prominence configuration will lead to a fast CME, while an inverse quiescent prominence results in a slow CME. In this paper we explore a different scenario to explain the existence of fast and slow CMEs. Postulating only an inverse topology for the quiescent prominences, we show that fast and slow CMEs result from different physical processes responsible for the destabilization of the coronal magnetic field and for the initiation and launching of the CME. We use a 2.5-D, time-dependent streamer and flux-rope magnetohydrodynamic (MHD) model (Wu and Guo, 1997) and investigate three initiation processes, viz. (1) injecting of magnetic flux into the flux-rope, thereby causing an additional Lorentz force that will destabilize the streamer and launch a CME (Wu et al., 1997, 1999); (2) draining of plasma from the flux-rope and triggering a magnetic buoyancy force that causes the flux-rope to lift and launch a CME; and (3) introducing additional heating into the flux-rope, thereby simulating an active-region flux-rope accompanied by a flare to launch a CME. We present 12 numerical tests using these three driving mechanisms either alone or in various combinations. The results show that both fast and slow CMEs can be obtained from an inverse prominence configuration subjected to one or more of these three different initiation processes.  相似文献   
27.
The locations of flares and chromospheric absorption features on May 21 and 23, 1967, are compared with a series of H magnetograms. Each of the four major flares included in the study developed as double emission ribbons lying at positions of steep field gradient on opposite sides of the boundary between regions of opposite magnetic polarity. At certain stages, the flare outlines followed closely the isogauss contours of the longitudinal field. A fluctuating field of 75 gauss was measured directly in the importance two flare of May 21. Modifications in the magnetic structure of the active region followed the flares of May 23.  相似文献   
28.
We present a model for quiescent prominences with helical structure. The model is described by two magnetic fields, one produced by photospheric or subphotospheric currents, the other due to currents along the cylindrical model prominence.On leave from Max-Planck Institut für Physik und Astrophysik, München.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
29.
We present a theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence. We argue that the formation of a coronal cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support.We initiate the study by considering the stability of condensation modes of a plasma in the coronal streamer model obtained by Steinolfson et al. (1982) using a 2-D, time dependent, ideal MHD computer simulation; they calculated the dynamic interaction between outward flowing solar wind plasma and a global coronal magnetic field. In the final steady state, they found a density enhancement in the closed field region with the enhancement increasing with increasing strength of the magnetic field. Our stability calculation shows that if the density enhancement is higher than a critical value, the plasma is unstable to condensation modes. We describe how, depending on the magnetic field configuration, the condensation may produce a coronal cavity and/or initiate the formation of a prominence.NRC Research Associate.  相似文献   
30.
The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacecraft has observed for the first time the longitudinal component of the magnetic field by means of the Zeeman effect in the transition region above a sunspot. The data presented here were obtained on three days in one sunspot, have spatial resolutions of 10 arc sec and 3 arc sec, and yield maximum field strengths greater than 1000 G above the umbrae in the spot. The method of analysis, including a line-width calibration feature used during some of the observations, is described in some detail in an appendix; the line width is required for the determination of the longitudinal magnetic field from the observed circular polarization.The transition region data for one day are compared with photospheric magnetograms from the Marshall Space Flight Center. Vertical gradients of the magnetic field are computed from the two sets of data; the maximum gradients of 0.41 to 0.62 G km–1 occur above the umbra and agree with or are smaller than values observed previously in the photosphere and low chromosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号