首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   9篇
  国内免费   8篇
测绘学   12篇
大气科学   32篇
地球物理   60篇
地质学   63篇
海洋学   52篇
天文学   67篇
综合类   10篇
自然地理   13篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   1篇
  2018年   5篇
  2017年   13篇
  2016年   15篇
  2015年   9篇
  2014年   12篇
  2013年   11篇
  2012年   7篇
  2011年   12篇
  2010年   10篇
  2009年   23篇
  2008年   19篇
  2007年   14篇
  2006年   15篇
  2005年   18篇
  2004年   12篇
  2003年   14篇
  2002年   10篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   10篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   3篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1974年   1篇
  1973年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
191.
The role of copepod grazing on the ecosystem dynamics in the Oyashio region, western subarctic Pacific was investigated during six cruises from June 2001 to June 2002. In situ grazing rates of the copepod community (CGR) were measured by the gut fluorescence method in respect to developmental stages of dominant species. In terms of biomass, more than 80% of the copepod community was dominated by six large calanoid species (Neocalanus cristatus, Neocalanus flemingeri, Neocalanus plumchrus, Eucalanus bungii, Metridia pacifica and Metridia okhotensis) throughout the year. Resulting from the observed pattern of the interzonal migrating copepods, the CGR in the Oyashio region was divided into three phases, i.e. spring (bloom), summer (post-bloom) and autumn-winter phase. During the spring bloom, late copepodites of the interzonal migrating species, N. cristatus, N. flemingeri and E. bungii appeared in the surface layer (0-50 m) to consume the production of the bloom, resulting in a high grazing rate of the copepod community (7.9 mg Chl m−2 d−1), though its impact on phytoplankton community was low due to the high primary productivity. During the post-bloom period, although the copepod community which was dominated by N. cristatus, N. plumchrus, M. pacifica and newly recruited E. bungii still maintained a high biomass, the CGR was generally lower (1.8-2.6 mg Chl m−2 d−1 for June and August 2001), probably due to the lower availability of phytoplankton. Nevertheless, the highest CGR was also observed during this period (10.5 mg Chl m−2 d−1 in June 2002). The high CGR on autotrophic carbon accounted for 69% of the primary production, suggesting that the copepod community in the Oyashio region potentially terminates the phytoplankton bloom. Abundant occurrence of young E. bungii, which is a characteristic phenomenon in the Oyashio region, was largely responsible for the high grazing pressure in June 2002 suggesting that success of reproduction, growth, and survival in E. bungii during the spring bloom is an important factor in controlling phytoplankton abundance during the post-bloom season. During autumn and winter, CGR was the lowest in the year (0.29-0.38 mg Chl. m−2 d−1) due to the disappearance of the interzonal migrating copepods from the surface layer. Diel migrant M. pacifica was the most important grazer during this period. The annual ingestion of the copepod community is estimated as 37.7 gC m−2 on autotrophic carbon (converted using C:Chl ratio of 30) or 137.9 gC m−2 on suspended particles (using C:Chl ratio of in situ value, 58-191), accounting for 13% and 46% of annual primary production, respectively. This study confirms that copepod grazing is an important pathway in carbon flow in the Oyashio region and in particular their role in the phytoplankton dynamics is significant for the termination of the spring bloom.  相似文献   
192.
The vertical distributions of cobalt, iron, and manganese in the water column were studied during the E-Flux Program (E-Flux II and III), which focused on the biogeochemistry of cold-core cyclonic eddies that form in the lee of the Hawaiian Islands. During E-Flux II (January 2005) and E-Flux III (March 2005), 17 stations were sampled for cobalt (n=147), all of which demonstrated nutrient-like depletion in surface waters. During E-Flux III, two depth profiles collected from within a mesoscale cold-core eddy, Cyclone Opal, revealed small distinct maxima in cobalt at 100 m depth and a larger inventory of cobalt within the eddy. We hypothesize that this was due to a cobalt concentrating effect within the eddy, where upwelled cobalt was subsequently associated with sinking particulate organic carbon (POC) via biological activity and was released at a depth coincident with nearly complete POC remineralization [Benitez-Nelson, C., Bidigare, R.R., Dickey, T.D., Landry, M.R., Leonard, C.L., Brown, S.L., Nencioli, F., Rii, Y.M., Maiti, K., Becker, J.W., Bibby, T.S., Black, W., Cai, W.J., Carlson, C.A., Chen, F., Kuwahara, V.S., Mahaffey, C., McAndrew, P.M., Quay, P.D., Rappe, M.S., Selph, K.E., Simmons, M.P., Yang, E.J., 2007. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science 316, 1017–1020]. There is also evidence for the formation of a correlation between cobalt and soluble reactive phosphorus during E-Flux III relative to the E-Flux II cruise that we suggest is due to increased productivity, implying a minimum threshold of primary production below which cobalt–phosphate coupling does not occur. Dissolved iron was measured in E-Flux II and found in somewhat elevated concentrations (0.5 nM) in surface waters relative to the iron depleted waters of the surrounding Pacific [Fitzwater, S.E., Coale, K.H., Gordon, M.R., Johnson, K.S., Ondrusek, M.E., 1996. Iron deficiency and phytoplankton growth in the equatorial Pacific. Deep-Sea Research II 43 (4–6), 995–1015], possibly due to island effects associated with the iron-rich volcanic soil from the Hawaiian Islands and/or anthropogenic inputs. Distinct depth maxima in total dissolved cobalt were observed at 400–600 m depth, suggestive of the release of metals from the shelf area of comparable depth that surrounds these islands.  相似文献   
193.
A rich set of new measurements has greatly expanded our understanding of the Moon–plasma interaction over the last sixteen years, and helped demonstrate the fundamentally kinetic nature of many aspects thereof. Photon and charged particle impacts act to charge the lunar surface, forming thin Debye-scale plasma sheaths above both sunlit and shadowed hemispheres. These impacts also produce photoelectrons and secondary electrons from the surface, as well as ions from the surface and exosphere, all of which in turn feed back into the plasma environment. The solar wind interacts with sub-ion-inertial-scale crustal magnetic fields to form what may be the smallest magnetospheres in the solar system. Proton gyro-motion, solar wind pickup of protons scattered from the dayside surface, and plasma expansion into vacuum each affect the dynamics and structure of different portions of the lunar plasma wake. The Moon provides us with a basic plasma physics laboratory for the study of fundamental processes, some of which we cannot easily observe elsewhere. At the same time, the Moon provides us with a test bed for the study of processes that also operate at many other solar system bodies. We have learned much about the Moon–plasma interaction, with implications for other space and planetary environments. However, many fundamental problems remain unsolved, including the details of the coupling between various parts of the plasma environment, as well as between plasma and the surface, neutral exosphere, and dust. In this paper, we describe our current understanding of the lunar plasma environment, including illustrative new results from Lunar Prospector and Kaguya, and outstanding unsolved problems.  相似文献   
194.
Because the solar wind (SW) flow is usually super-sonic, a fast-mode bow shock (BS) is formed in front of the Earth's magnetosphere, and the Moon crosses the BS at both dusk and dawn flanks. On the other hand, behind of the Moon along the SW flow forms a tenuous region called lunar wake, where the flow can be sub-Alfvénic (and thus sub-sonic) because of its low-density status. Here we report, with joint measurement by Chang’E-1 and SELENE, that the Earth's BS surface is drastically deformed in the lunar wake. Despite the quasi-perpendicular shock configuration encountered at dusk flank under the Parker-spiral magnetic field, no clear shock surface can be found in the lunar wake, while instead gradual transition of the magnetic field from the upstream to downstream value was observed for a several-minute interval. This finding suggests that the ‘magnetic ramp’ is highly broadened in the wake where a fast-mode shock is no longer maintained due to the highly reduced density. On the other hand, observations at the 100 km altitude on the dayside show that the fast-mode shock is maintained even when the width of the downstream region is smaller than a typical scale length of a perpendicular shock. Our results suggest that the Moon is not so large to eliminate the BS at 100 km altitude on the dayside, while the magnetic field associated with the shock structure is drastically affected in the lunar wake.  相似文献   
195.
A computer model for stream water temperature was developed, and tested in a small pasture stream near Hamilton, New Zealand. The model quantifies shading by riparian vegetation, hillsides, and stream banks using three coefficients: canopy angle, topography angle, and canopy shade factor. Shade was measured directly and found to vary significantly along the channel. Using the maximum measured shade, a close match was achieved between observed and predicted daily maximum and minimum water and bed sediment temperature. Model predictions of incoming and outgoing long‐wave radiation flux closely matched measurements, but there were unexplained discrepancies in short‐wave radiation flux. Model predictions indicate that moderate shade levels (c. 70%) may be sufficient in temperate climates to restore headwater pasture stream temperatures to 20°C, an estimate of the thermal tolerance for sensitive invertebrates.  相似文献   
196.
The precision of GPS/acoustic seafloor positioning was improved by introducing a hull-mounted onboard system in March 2008, which allows us to conduct acoustic ranging measurements with the vessel sailing along the pre-determined track lines, while the early system before 2008 could only adopt the uncontrollable drifting observation. The continuity of the positioning results due to the transition was first confirmed through the comparison between results from sailing and drifting observations conducted in parallel. Using the data acquired for about 3 years since 2008, the repeatability of the determined position for the sailing observation was evaluated to be about 2 cm in root mean squares in the horizontal component, significantly better than that for the early drifting observation. The improvement of positioning precision probably resulted from the improvement of geometric distribution of acoustic ranging data by controlling the track lines. It was also shown that the sailing observation allows to obtain reliable results with a smaller amount of data. Comparison between the results in different sea regions suggests that positioning precision is better in the region along the Nankai Trough than in the region along the Japan Trench, probably because of the complicated acoustic velocity structure of seawater often observed in the latter. Furthermore, the precision of height determination was also improved, which leads us to expect that vertical crustal movement will be detectable in the future through accumulation of data as well as further technology development.  相似文献   
197.
In the present paper, in the rectilinear three-body problem, we qualitatively follow the positions of non-Schubart periodic orbits as the mass parameter changes. This is done by constructing their characteristic curves. In order to construct characteristic curves, we assume a set of properties on the shape of areas corresponding to symbol sequences. These properties are assured by our preceding numerical calculations. The main result is that characteristic curves always start at triple collision and end at triple collision. This may give us some insight into the nature of periodic orbits in the N-body problem.  相似文献   
198.
A high‐resolution map of potential frozen ground distribution in NE Asia (90–150°E, 25–60°N) at the period of the Last Permafrost Maximum (LPM, c. 21 000 years ago) was dually reconstructed by means of a statistical classification using air freezing and thawing indices and a topographical downscaling using a digital relief model (ETOPO1). Background LPM climate data were derived from global climate model simulations of the Paleoclimate Model Intercomparison Project, Phase II (PMIP2). The reconstructed LPM map shows the southward shift of the southern limit of climate‐driven permafrost by 400–1500 km, with the greatest advance in the western sector (90–110°E), encompassing an area from central Siberia to most of the Altai area. The advance of environmentally conditional permafrost and seasonally frozen ground was greatest in the eastern sector (110–150°E), with an average shift of about 450 km. The descent of the lower limit of LPM alpine permafrost was in the range of 400–800 m. A comparison of the reconstructed map with published literature shows that this method, simplistically constructed yet effectively recognizing seasonality, continentality and topography, captures local features better than more elaborate methods. The sensitivity examination of a constant atmospheric lapse rate shows that altitudes of 2000–5000 m a.s.l. were most sensitive, though with only a limited effect on overall LPM distribution.  相似文献   
199.
200.
Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ15N values of chloropigments of photosynthetic organisms to determine the corresponding δ15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth’s history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ15Nbiomass − δ15Nchloropigment) for prokaryotes, with average values for species ranging from −12.2‰ to +11.7‰. We define this difference as εpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of εpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of εpor for freshwater cyanobacterial species is −9.8 ± 1.8‰, while for marine cyanobacteria it is −0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., εpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of εpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of εpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of εpor suggests that values of εpor could be useful for determining the fractional burial of eukaryotic vs. cyanobacterial organic matter in the sedimentary record.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号