首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   6篇
  国内免费   1篇
测绘学   2篇
大气科学   2篇
地球物理   31篇
地质学   21篇
海洋学   33篇
天文学   16篇
自然地理   2篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   9篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   7篇
  2008年   2篇
  2007年   9篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1973年   1篇
排序方式: 共有107条查询结果,搜索用时 23 毫秒
21.
At four stations in Tokyo Bay, pore water profiles of dissolved organic carbon (DOC), nitrogen (DON), phosphorus (DOP), and inorganic nutrients were determined at 3-month intervals over 6 years. Concentrations of dissolved organic matter (DOM) and nutrients were significantly higher in pore waters than in the overlying waters. Pore water DOC, DON, and DOP concentrations in the upper most sediment layer (0–1 cm) ranged from 246 to 888 μM, from 14.6 to 75.9 μM, and from 0.02 to 9.83 μM, respectively. Concentrations of DOM and nutrients in pore waters occasionally showed clear seasonal trends and were highest in the summer and lowest in the winter. The seasonal trends in the pore water DOM concentrations were coupled with trends in the overlying water temperature and dissolved oxygen concentration. Benthic effluxes of DON and DOP were low compared with those of inorganic nutrients, accounting for only 1.0 and 1.5 % of the total benthic effluxes of nitrogen and phosphorus, respectively; thus benthic DOM fluxes were quantitatively insignificant to the inorganic nutrient fluxes in Tokyo Bay. The DOM fluxes represented about 7, 3, and 10 % of the riverine discharge of DOC, DON, and DOP to Tokyo Bay, respectively.  相似文献   
22.
Which is more important for tropical cyclone (TC) intensity and intensification, sea surface temperature (SST) or tropical cyclone heat potential (TCHP)? Investigations using best-track TC central pressures, TRMM/TMI three-day mean SST data, and an estimated TCHP based on oceanic reanalysis data from 1998 to 2004, show that the central pressure is more closely related to TCHP accumulated from TC formation to its mature stages than to the accumulated SST and its duration. From an oceanic environmental viewpoint, a rapid deepening of TC central pressure occurs when TCHP is relatively high on a basin scale, while composite distributions of TCHP, vertical wind shear, lower tropospheric relative humidity, and wind speed occurring in cases of rapid intensification are different for each TC season. In order to explore the influence of TCHP on TC intensity and intensification, analyses using both oceanic reanalysis data and the results of numerical simulations based on an ocean general circulation model are performed for the cases of Typhoons Chaba (2004) and Songda (2004), which took similar tracks. The decrease in TCHP due to the passage of Chaba led to the suppression of Songda’s intensity at the mature stage, while Songda maintained its intensity for a relatively long time because induced near-inertial currents due to the passage of Chaba reproduced anticyclonic warm eddies appearing on the leftside of Chaba’s track before Songda passed by. This type of intensity-sustenance process caused by the passage of a preceding TC is often found in El Niño years. These results suggest that TCHP, but not SST, plays an important role in TC intensity and its intensification.  相似文献   
23.
A numerical study using a 3-D nonhydrostatic model has been applied to baroclinic processes generated by the K 1 tidal flow in and around the Kuril Straits. The result shows that large-amplitude unsteady lee waves are generated and cause intense diapycnal mixing all along the Kuril Island Chain to levels of a maximum diapycnal diffusivity exceeding 103 cm2s−1. Significant water transformation by the vigorous mixing in shallow regions produces the distinct density and potential vorticity (PV) fronts along the Island Chain. The pinched-off eddies that arise and move away from the fronts have the ability to transport a large amount of mixed water (∼14 Sv) to the offshore regions, roughly half being directed to the North Pacific. These features are consistent with recent satellite imagery and in-situ observations, suggesting that diapycnal mixing within the vicinity of the Kuril Islands has a greater impact than was previously supposed on the Okhotsk Sea and the North Pacific. To examine this influence of tidal processes at the Kurils on circulations in the neighboring two basins, another numerical experiment was conducted using an ocean general circulation model with inclusion of tidal mixing along the islands, which gives a better representation of the Okhotsk Sea Mode Water than in the case without the tidal mixing. This is mainly attributed to the added effect of a significant upward salt flux into the surface layer due to tidal mixing in the Kuril Straits, which is subsequently transported to the interior region of the Okhotsk Sea. With a saline flux into the surface layer, cooling in winter in the northern part of the Okhotsk Sea can produce heavier water and thus enhance subduction, which is capable of reproducing a realistic Okhotsk Sea Mode Water. The associated low PV flux from the Kuril Straits to the open North Pacific excites the 2nd baroclinic-mode Kelvin and Rossby waves in addition to the 1st mode. Interestingly, the meridional overturning in the North Pacific is strengthened as a result of the dynamical adjustment caused by these waves, leading to a more realistic reproduction of the North Pacific Intermediate Water (NPIW) than in the case without tidal mixing. Accordingly, the joint effect of tidally-induced transport and transformation dominating in the Kuril Straits and subsequent eddy-transport is considered to play an important role in the ventilation of both the Okhotsk Sea and the North Pacific Ocean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
24.
The quantitative evaluation of the effects of bedrock groundwater discharge on spatial variability of stream dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP) concentrations has still been insufficient. We examined the relationships between stream DOC, DIN and DIP concentrations and bedrock groundwater contribution to stream water in forest headwater catchments in warm-humid climate zones. We sampled stream water and bedrock springs at multiple points in September and December 2013 in a 5 km2 forest headwater catchment in Japan and sampled groundwater in soil layer in small hillslopes. We assumed that stream water consisted of four end members, groundwater in soil layer and three types of bedrock groundwater, and calculated the contributions of each end member to stream water from mineral-derived solute concentrations. DOC, DIN and DIP concentrations in stream water were compared with the calculated bedrock groundwater contribution. The bedrock groundwater contribution had significant negative linear correlation with stream DOC concentration, no significant correlation with stream DIN concentration, and significant positive linear correlation with stream DIP concentration. These results highlighted the importance of bedrock groundwater discharge in establishing stream DOC and DIP concentrations. In addition, stream DOC and DIP concentrations were higher and lower, respectively, than those expected from end member mixing of groundwater in soil layer and bedrock springs. Spatial heterogeneity of DOC and DIP concentrations in groundwater and/or in-stream DOC production and DIP uptake were the probable reasons for these discrepancies. Our results indicate that the relationships between spatial variability of stream DOC, DIN and DIP concentrations and bedrock groundwater contribution are useful for comparing the processes that affect stream DOC, DIN and DIP concentrations among catchments beyond the spatial heterogeneity of hydrological and biogeochemical processes within a catchment.  相似文献   
25.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
26.
Primordial black holes (PBHs) are known to be produced from collapsing cosmic defects such as domain walls and strings. In this paper we show how PBHs are produced in monopole-string networks.  相似文献   
27.
Wind-tunnel experiments in a thermally stratified wind tunnel and direct numerical simulations were performed to simulate the thermal internal boundary layer (TIBL) that developed over a coastal area in a sea-breeze flow. The results of the simulations were analyzed to investigate turbulence structure in the TIBL. To study the effects of the atmospheric stability over the sea on the TIBL, two vertical profiles of temperature were created in the upstream portion of the wind-tunnel experiment and the direct numerical simulation. Turbulence statistics of the TIBL changed significantly according to the temperature profile over the sea, indicating that the stability of the flow over the sea has a significant effect on the structure and turbulence characteristics of the TIBL. Furthermore, the TIBL heights were estimated from the vertical profiles of the local Richardson number. The estimated TIBL heights agreed with those predicted by a pre-existing relation, suggesting that both the wind-tunnel experiment and the direct numerical simulation accurately reproduced the growth of the TIBL.  相似文献   
28.
The effect of grain growth on the cation exchange between synthesized forsterite aggregates (i.e., dunite) and nickel-rich aqueous fluid was evaluated experimentally at 1.2 GPa and 1,200°C. The grain boundary (GB) migration caused nickel enrichment in the area swept by the GBs in a fashion similar to that reported for stable isotope exchange in the quartz aggregates. The progress of the grain growth resulted in an increase in the average nickel concentration in the dunites of up to ~80 times that was calculated for a system having stationary GBs. The overall diffusivity of the nickel along the wet GBs and interconnected fluid networks was found to be 6.5 × 10−19–6.7 × 10−18 m3/s, which is 4–5 orders of magnitude higher than the grain boundary diffusivity in the dry dunite. These results show that the grain growth rate is a fundamental factor in the evaluation of the time scale of chemical homogenization in the upper mantle.  相似文献   
29.
Shergottites sampled two distinct geochemical reservoirs on Mars. Basaltic and olivine-phyric shergottites individually sampled both geochemically enriched and depleted reservoirs, whereas lherzolitic shergottites are previously known only to exhibit a relatively limited intermediate geochemical signature that may have resulted from the mixing of the two geochemical end-member reservoirs. Here we show that recently discovered shergottites Robert Massif (RBT) 04261 and RBT 04262 are the first examples of lherzolitic shergottites originating from the enriched reservoir.RBT 04261 and RBT 04262, initially identified as olivine-phyric shergottites, are actually lherzolitic shergottites. Both meteorites exhibit nearly identical textures and mineral compositions, suggesting that they should be paired. Each consists of two distinct textures: poikilitic and non-poikilitic. The poikilitic areas are composed of pyroxene oikocrysts enclosing olivine grains; all pyroxene oikocrysts have pigeonite cores mantled by augite. The non-poikilitic areas are composed of olivine, pyroxene, maskelynite and minor amounts of merrillite, chromite and ilmenite. Olivine and pyroxene show the lowest Mg-number, and maskelynite has the lowest anorthite component among the lherzolitic shergottites. Moreover, the modal abundances of maskelynite in these two meteorites are distinctly higher than the other lherzolitic shergottites.The rare earth element (REE) budgets of RBT 04261 and RBT 04262 are dominated by merrillite. The slightly light rare earth element (LREE)-enriched pattern of this mineral is similar to that of merrillite in the geochemically enriched basaltic shergottites Shergotty and Zagami, and unlike the LREE-depleted pattern of merrillite in the other lherzolitic shergottites. The REE patterns of both high- and low-Ca pyroxenes are also similar to those in Shergotty and Zagami. The REE pattern of a melt calculated to be in equilibrium with the core of a pyroxene oikocryst is parallel to that of the RBT 04262 whole-rock as well as whole-rock compositions of other geochemically enriched basaltic shergottites. These observations imply that RBT 04262 sampled an enriched and oxidized reservoir similar to that sampled by some of the basaltic shergottites and are consistent with an oxidizing condition for the formation of RBT 04262 (log fO2 = QFM-1.6).The petrographic and geochemical observations presented here suggest that RBT 04261 and RBT 04262 represent the most evolved magma among the lherzolitic shergottites and that this magma originated from a geochemically enriched reservoir on Mars. Based on an evaluation of the relationship between petrographic, geochemical and chronological signatures for shergottites including RBT 04261 and RBT 04262, we propose that both geochemically enriched and depleted shergottites were ejected from the same launch site on Mars.  相似文献   
30.
Abstract– The Dawn spacecraft carries a gamma‐ray and neutron detector (GRaND), which will measure and map the abundances of selected elements on the surface of asteroid 4 Vesta. We compare the variability of moderately volatile/refractory incompatible element ratios (K/Th and K/Ti) in howardite, eucrite, and diogenite (HED) meteorites with those in other achondrite suites that represent asteroidal crusts, because these ratios may be accurately measured by GRaND and likely reflect initial chemical compositions of the HED parent body. The K/Th and K/Ti variations can differentiate HED meteorites from angrites and some unique eucrite‐like lithologies. The results suggest that K, Th, and Ti abundances determined from GRaND data could not only confirm that Vesta is the parent body of HED meteorites but might also allow recognition of as‐yet unsampled compositional terranes on Vesta. Besides the K‐Th‐Ti systematics study, we propose a new three‐component mixing model for interpretation of GRaND spectra, required because the spatial resolution of GRaND is coarser than the spectral (compositional) heterogeneity of Vesta’s surface. The mixing model uses abundances of K, Ti, Fe, and Mg that will be analyzed more accurately than other prospective GRaND‐analyzed elements. We examine propagated errors due to GRaND analytical uncertainties and intrinsic errors that stem from an assumption introduced into the mixing model. The error investigation suggests that the mixing model can adequately estimate not only the diogenite/eucrite mixing ratio but also the abundances of most major and minor elements within the GRaND propagated errors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号