首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
  国内免费   1篇
测绘学   3篇
大气科学   13篇
地球物理   25篇
地质学   20篇
海洋学   28篇
天文学   23篇
自然地理   7篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   1篇
  2012年   4篇
  2011年   10篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有119条查询结果,搜索用时 250 毫秒
81.
82.
Radii and angular velocities in the motions of drifting buoys deployed in the Kuroshio are estimated by fitting circles to the trajectories of two drifting buoys, one with a drogue at 300 m depth and the other at 800 m depth. The buoys were deployed in the Kuroshio where it was flowing counter-clockwise around the large cold water mass south of Honshu. The same technique was applied to two drifting buoys with drogues at 300 m depth placed in the Kuroshio where it flowed clockwise around Oshima Island in Sagami Bay. The centrifugal forces were 7% and 6% as large as the Coriolis forces in the Kuroshio around the cold water mass, and they were –56% and –42% as large as the Coriolis forces in the current around the Oshima Island. The temperature gradient observed in the Oshima-West Channel suggested that the pressure gradient there was smaller due to the centrifugal force acting against the Coriolis force than the pressure gradient to be balanced with the Coriolis force.  相似文献   
83.
Remarkable tidal currents associated with temperature fluctuations in the subsurface layer have been observed in Uchiura Bay. In order to study the characteristics of these tidal currents, we carried out current measurements in November 1972 and October 1974. It was confirmed from the first set of observations in 1972 that the tidal currents above and below the seasonal thermocline oscillate out of phase with each other and the tidal currents are associated with internal tides.In the second set of observations in 1974 not only current measurements but also serial BT lowerings were made. The phase of the thermocline displacements lagged behind the tidal currents by 81 for the semidiurnal constituent and by 83 for the diurnal constituent, and it is thus concluded that the internal tides in Uchiura Bay behave as standing waves.  相似文献   
84.
85.
Detailed field work at Okushiri Island and along the southwest coast of Hokkaido has revealed quantitatively (1) the advancing direction of tsunami on land, (2) the true tsunami height (i.e., height of tsunami, excluding its splashes, as measured from the ground) and (3) the flow velocity of tsunami on land, in heavily damaged areas. When a Japanese wooden house is swept away by tsunami, bolts that tie the house to its concrete foundation resist until the last moment and become bent towards the direction of the house being carried away. The orientations of more than 850 of those bent bolts and iron pipes (all that can be measured, mostly at Okushiri Island) and fell-down direction of about 400 trees clearly display how tsunami behaved on land and caused serious damage at various places. The true tsunami height was estimated by using several indicators, such as broken tree twigs and a window pane. The flow velocity of tsunami on land was determined by estimating the hydrodynamic force exerted on a bent handrail and a bent-down guardrail by the tsunami throughin situ strength tests.Contrary to the wide-spread recognition after the tsunami hazard, our results clearly indicate that only a few residential areas (i.e., Monai, eastern Hamatsumae, and a small portion at northern Aonae, all on Okushiri Island) were hit by a huge tsunami, with true heights reaching 10 m. Southern Aonae was completely swept away by tsunami that came directly from the focal region immediately to the west. The true tsunami height over the western sea wall of southern Aonae was estimated as 3 to 4 m. Northern Aonae also suffered severe damage due to tsunami that invaded from the corner zone of the sand dune (8 m high) and tide embankment at the northern end of the Aonae Harbor. This corner apparently acted as a tsunami amplifier, and tide embankment or breakwater can be quite dangerous when tsunami advances towards the corner it makes with the coast. The nearly complete devastation of Inaho at the northern end of Okushiri Island underscored the danger of tsunami whose propagation direction is parallel to the coast, since such tsunami waves tend to be amplified and tide embankment or breakwater is constructed low towards the coast at many harbors or fishing ports. Tsunami waves mostly of 2 to 4 m in true height swept away Hamatsumae on the southeast site of Okushiri Island where there were no coastal structures. Coastal structures were effective in reducing tsunami hazard at many sites. The maximum flow velocity at northern Aonae was estimated as 10 to 18 m/s (Tsutsumi et al., 1994), and such a high on-land velocity of tsunami near shore is probably due to the rapid shallowing of the deep sea near the epicentral region towards Okushiri Island. If the advancing direction, true height, and flow velocity of tsunami can be predicted by future analyses of tsunami generation and progagation, the analyses will be a powerful tool for future assessment of tsunami disasters, including the identification of blind spots in the tsunami hazard reduction.  相似文献   
86.
A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2–4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V “Jean Charcot” as a part of the Kaiko I cruise, Leg 3, in July–August 1984 under the auspices of the French-Japanese scientific cooperative program.  相似文献   
87.
Geotechnical and Geological Engineering - This paper investigates the settlement in a pavement due to soil liquefaction. Four 1-g shaking table tests were performed on saturated sand bed-pavement...  相似文献   
88.
Natural Hazards - The recognition of landslides and making their inventory map are considered to be urgent tasks not only for damage estimation but also for planning rescue and restoration...  相似文献   
89.
The temperature rise caused by frictional heating during seismic slip is able to indicate dynamic frictional properties of the seismic fault,which provides an approach to understand the dynamic process and energy budget of an earthquake.The residual indicators of frictional heating within the fault zone also can be taken as an evidence for seismic events.The vitrinite reflectance is a commonly-used geothermometer in the coal,oil and gas industries.It also has some potential applications in the studies of fault rock and fault mechanics.We studied vitrinite reflectance (VR) of fault rocks collected from surface outcrops of the Wenchuan earthquake fault zone in this paper.The measured data reveal that the VR of fault rocks are affected by fault motion,and there is a trend that the VR increases towards the fault core,which indicates the effects of frictional heating.The VR of fault rocks from the Bajiaomiao outcrop is much higher than those from the Shenxigou outcrop,which probably suggests the difference in fault activity at the two outcrops.Our study also suggests that systematic measurement of VR across the fault zone is helpful in identifying slip zones and determining their widths.From the VR measurement on an oriented specimen containing the slip surface of the Wenchuan earthquake from the Shenxigou outcrop,we observed anomalous high VR values in two black-colored slip zones of about 2mm in width near the slip surface.The numerical calculation shows that the maximum temperature rise on the fault plane near Shenxigou was probably less than 162℃ during the Wenchuan earthquake,which means the dynamic fault strength was quite low.These estimations are roughly in accord with the results from the high-velocity frictional experiments.  相似文献   
90.
Chemical reactions and volatile supply through hypervelocity impacts may have played a key role for the origin and evolution of both planetary and satellite atmospheres. In this study, we evaluate the role of impact-induced N2 production from reduced nitrogen-bearing solids proposed to be contained in Titan’s crust, ammonium sulfate ((NH4)2SO4), for the replenishment of N2 to the atmosphere in Titan’s history. To investigate the conversion of (NH4)2SO4 into N2 by hypervelocity impacts, we measured gases released from (NH4)2SO4 that was exposed to hypervelocity impacts created by a laser gun. The sensitivity and accuracy of the measurements were enhanced by using an isotope labeling technique for the target. We obtained the efficiency of N2 production from (NH4)2SO4 as a function of peak shock pressure ranging from ∼8 to ∼45 GPa. Our results indicate that the initial and complete shock pressures for N2 degassing from (NH4)2SO4 are ∼10 and ∼25 GPa, respectively. These results suggest that cometary impacts on Titan (i.e., impact velocity vi > ∼8 km/s) produce N2 efficiently; whereas satellitesimal impacts during the accretion (i.e., vi < 4 km/s) produce N2 only inefficiently. Even when using the proposed small amount of (NH4)2SO4 content in the crust (∼4 wt.%) (Fortes, A.D. et al., 2007. Icarus 188, 139-153), the total amount of N2 provided through cometary impacts over 4.5 Ga reaches ∼2-6 times the present atmospheric N2 (i.e., ∼7 × 1020-2 × 1021 [mol]) based on the measured production efficiency and results of a hydrodynamic simulation of cometary impacts onto Titan. This implies that cometary impacts onto Titan’s crust have the potential to account for a large part of the present N2 through the atmospheric replenishment after the accretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号