首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23861篇
  免费   3885篇
  国内免费   4814篇
测绘学   1072篇
大气科学   4431篇
地球物理   6065篇
地质学   11526篇
海洋学   2678篇
天文学   1408篇
综合类   2426篇
自然地理   2954篇
  2024年   58篇
  2023年   316篇
  2022年   882篇
  2021年   1037篇
  2020年   886篇
  2019年   1003篇
  2018年   1217篇
  2017年   1101篇
  2016年   1301篇
  2015年   1003篇
  2014年   1278篇
  2013年   1390篇
  2012年   1214篇
  2011年   1329篇
  2010年   1265篇
  2009年   1290篇
  2008年   1131篇
  2007年   1091篇
  2006年   883篇
  2005年   927篇
  2004年   661篇
  2003年   692篇
  2002年   679篇
  2001年   640篇
  2000年   709篇
  1999年   1052篇
  1998年   855篇
  1997年   918篇
  1996年   875篇
  1995年   722篇
  1994年   607篇
  1993年   549篇
  1992年   442篇
  1991年   338篇
  1990年   277篇
  1989年   221篇
  1988年   224篇
  1987年   176篇
  1986年   141篇
  1985年   135篇
  1984年   132篇
  1983年   124篇
  1982年   101篇
  1981年   73篇
  1980年   87篇
  1979年   77篇
  1978年   64篇
  1977年   55篇
  1976年   49篇
  1975年   44篇
排序方式: 共有10000条查询结果,搜索用时 515 毫秒
81.
On the practice of estimating fractal dimension   总被引:11,自引:0,他引:11  
Coastlines epitomize deterministic fractals and fractal (Hausdorff-Besicovitch) dimensions; a divider [compass] method can be used to calculate fractal dimensions for these features. Noise models are used to develop another notion of fractals, a stochastic one. Spectral and variogram methods are used to estimate fractal dimensions for stochastic fractals. When estimating fractal dimension, the objective of the analysis must be consistent with the method chosen for fractal dimension calculation. Spectal and variogram methods yield fractal dimensions which indicate the similarity of the feature under study to noise (e.g., Brownian noise). A divider measurement method yields a fractal dimension which is a measure of complexity of shape.  相似文献   
82.
Seasonal distribution of sulfur fractions in Louisiana salt marsh soils   总被引:2,自引:0,他引:2  
The profile distributions of specific sulfur forms were examined at a site in a Louisiana salt marsh over a 1-yr period. Soil samples were fractionated into acid-volatile sulfides, HCl-soluble sulfur, elemental sulfur, pyrite sulfur, ester-sulfate sulfur, carbon-bonded sulfur, and total sulfur. Inorganic sulfur constituted 16% to 36% of total sulfur, with pyrite sulfur representing <2%. Pyrite sulfur content in marsh soil was relatively high in winter. Pyrite sulfur and elemental sulfur together accounted for 4% to 24% of the inorganic sulfur fraction. Between 74% and 95% of inorganic sulfur was present as the HCl-soluble sulfur form. A significant negative correlation between acid-volatile sulfides and elemental sulfur observed in summer suggested the transformation of fulfides to elemental sulfur. Organic sulfur, in the forms of ester-sulfate sulfur and carbon-bonded sulfur, predominated in all sampling periods, comprising 64% to 84% of total sulfur. The conversion of ester-sulfate sulfur into carbon-bonded sulfur was more likely to occur in winter than in other seasons. Carbon-bonded sulfur accounted for 53% to 89% of the organic sulfur. Organic sulfur was the major contributor to the variation of total sulfur in all seasons studied. Total sulfur concentration showed a statistically significant increase with depth.  相似文献   
83.
It has become clear in recent years that relativistic beaming is a good explanation for the BL Lac phenomenon. Of studies based on the relativistic beaming model of BL Lac objects, we note that the orientation of jet's axis to the line-of-sight is very small and, therefore, the observed flux emitted from a rapidly moving source is orders of magnitude higher than the flux in its rest-frame:F obs = 3 + F intr, where is the bulk relativistic Doppler factor. Then the observed apparent magnitudem v must be corrected for this effect. For our 39 samples, the corrected apparent magnitudem v corr and logZ have a good correlation.  相似文献   
84.
We found that the structure of the Universe can be characterized by a set of actions s . This means that some discontinuous phenomena in the Universe can be considered as large-scale quantum effects. The behaviour of matter on a typical scale is determined by the behaviour of matter on other scales through the interactions.  相似文献   
85.
In former works (Zhouet al., 1983, 1985), a quantitative method have been developed to take the selection effects in the identification of emission lines of quasars into account. It was proved that these selection effects may be the cause of the unevenness in the redshift distribution of quasars. The present work is a continuation and development of former works. We use results given by the surveys with same limit-apparent magnitude and choose the quasars whose absolute magnitudes are within a specific range as the analysing samples. Using the method given in the former papers we may find out the evolutionary parameter in an evolutionary law with form of (1+z) y from the best fitting between the calculative and observational redshift distribution. The result of analysis shows that the evolutionary law of quasars selected by slitless technique isp =p 0(1 + z)6.5 ± 1 up toz=2.8. This result coincides with and generalizes the earlier result given by other authors.  相似文献   
86.
我国著名的水文地理学家、中国科学院地理研究所研究员郭敬辉同志于1985年4月5日溘然长逝。他的逝世是我国地理学界和水文学界的一大损失。我们怀着十分悲痛的心情对他表示沉重悼念。  相似文献   
87.
We present a detailed, new time scale for an orogenic cycle (oceanic accretion–subduction–collision) that provides significant insights into Paleozoic continental growth processes in the southeastern segment of the long-lived Central Asian Orogenic Belt (CAOB). The most prominent tectonic feature in Inner Mongolia is the association of paired orogens. A southern orogen forms a typical arc-trench complex, in which a supra-subduction zone ophiolite records successive phases during its life cycle: birth (ca. 497–477 Ma), when the ocean floor of the ophiolite was formed; (2) youth (ca. 473–470 Ma), characterized by mantle wedge magmatism; (3) shortly after maturity (ca. 461–450 Ma), high-Mg adakite and adakite were produced by slab melting and subsequent interaction of the melt with the mantle wedge; (4) death, caused by subduction of a ridge crest (ca. 451–434 Ma) and by ridge collision with the ophiolite (ca. 428–423 Ma). The evolution of the magmatic arc exhibits three major coherent phases: arc volcanism (ca. 488–444 Ma); adakite plutonism (ca. 448–438 Ma) and collision (ca. 419–415 Ma) of the arc with a passive continental margin. The northern orogen, a product of ridge-trench interaction, evolved progressively from coeval generation of near-trench plutons (ca. 498–461 Ma) and juvenile arc crust (ca. 484–469 Ma), to ridge subduction (ca. 440–434 Ma), microcontinent accretion (ca. 430–420 Ma), and finally to forearc formation. The paired orogens followed a consistent progression from ocean floor subduction/arc formation (ca. 500–438 Ma), ridge subduction (ca. 451–434 Ma) to microcontinent accretion/collision (ca. 430–415 Ma); ridge subduction records the turning point that transformed oceanic lithosphere into continental crust. The recognition of this orogenic cycle followed by Permian–early Triassic terminal collision of the CAOB provides compelling evidence for episodic continental growth.  相似文献   
88.
Chemical structure of Jurassic vitrinites isolated from the coals in basins in NW China have been checked using solid state 13C NMR and flash pyrolysis-GC/MS. Study shows some Jurassic collodetrinites are rich in aliphatic products in pyrolysates, consisting with the high amount of methylene carbon in 13C NMR spectra. In contrast, pyrolysates of Jurassic collotelinites are rich in phenols and alkylbenzenes. Also one Pennsylvanian and one Permian vitrinite selected from the Ordos basin, NW China have been checked for comparison. The proportion of aliphatics is low in pyrolysates, and aliphatic carbon peak in 13C NMR spectrum of Permian vitrinite is mostly composed of gas-prone carbons compared with collodetrinites in those Jurassic basins. But both pyrolysis and 13C NMR data shows the Pennsylvanian vitrinite is not only gas-prone but also oil-prone. Relatively high proportion of long chain aliphatic structure of some Jurassic vitrinite in Junggar, Turpan-Hami basins may be due to the contribution of liptodetrinites, which may be included during the formation of vitrinites. And it seems that suberinite is the most possible precursor of long chain aliphatics in the structure of Jurassic collodetrinite.  相似文献   
89.
There is an increasing evidence for the involvement of pre-Neoproterozoic zircons in the Arabian–Nubian Shield, a Neoproterozoic crustal tract that is generally regarded to be juvenile. The source and significance of these xenocrystic zircons are not clear. In an effort to better understand this problem, older and younger granitoids from the Egyptian basement complex were analyzed for chemical composition, SHRIMP U–Pb zircon ages, and Sm–Nd isotopic compositions. Geochemically, the older granitoids are metaluminous and exhibit characteristics of I-type granites and most likely formed in a convergent margin (arc) tectonic environment. On the other hand, the younger granites are peraluminous and exhibit the characteristics of A-type granites; these are post-collisional granites. The U–Pb SHRIMP dating of zircons revealed the ages of magmatic crystallization as well as the presence of slightly older, presumably inherited zircon grains. The age determined for the older granodiorite is 652.5 ± 2.6 Ma, whereas the younger granitoids are 595–605 Ma. Xenocrystic zircons are found in most of the younger granitoid samples; the xenocrystic grains are all Neoproterozoic, but fall into three age ranges that correspond to the ages of other Eastern Desert igneous rocks, viz. 710–690, 675–650 and 635–610 Ma. The analyzed granitoids have (+3.8 to +6.5) and crystallization ages, which confirm previous indications that the Arabian–Nubian Shield is juvenile Neoproterozoic crust. These results nevertheless indicate that older Neoproterozoic crust contributed to the formation of especially the younger granite magmas.  相似文献   
90.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号