首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   4篇
  国内免费   6篇
测绘学   1篇
大气科学   5篇
地球物理   42篇
地质学   38篇
海洋学   30篇
天文学   8篇
自然地理   5篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2014年   11篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   10篇
  2003年   2篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有129条查询结果,搜索用时 421 毫秒
41.
The Os‐isotope compositions of sulphides in mantle xenoliths hosted by Late Miocene alkali basalts from the Sviyaginsky volcano, Russian Far East, reveal the presence of Archaean–Proterozoic subcontinental lithospheric mantle beneath the Khanka massif. Their TMA and TRD model ages reveal similar peaks at 1.1 and 0.8 Ga suggesting later thermotectonic events in the subcontinental lithospheric mantle, whereas TRD model ages range back to 2.8 ± 0.5 (2σ) Ga. The events recognized in the subcontinental lithospheric mantle are consistent with those recorded in the crust of the Khanka massif. The sulphide Os‐isotope data show that the subcontinental lithospheric mantle beneath the Khanka massif had formed at least by the Mesoproterozoic, and was subsequently metasomatized by juvenile crustal‐growth events related to the evolution of the Altaids. The Khanka massif is further proposed to have tectonic affinity to the Siberia Craton and should originate from it accordingly.  相似文献   
42.
We investigated the correlation between coastal and offshore tsunami heights by using data from the Dense Oceanfloor Network for Earthquakes and Tsunamis (DONET) observational array of ocean-bottom pressure gauges in the Nankai trough off the Kii Peninsula, Japan. For near-field earthquakes, hydrostatic pressure changes may not accurately indicate sea surface fluctuations, because ocean-bottom pressure gauges are simultaneously displaced by crustal deformation due to faulting. To avoid this problem, we focused on the average waveform of the absolute value of the hydrostatic pressure changes recorded at all the DONET stations during a tsunami. We conducted a Monte Carlo tsunami simulation that revealed a clear relationship between the average waveforms of DONET and tsunami heights at the coast. This result indicates the possibility of accurate real-time prediction of tsunamis by use of arrays of ocean-bottom pressure gauges.  相似文献   
43.
In order to understand the characteristics of shallow very low-frequency (VLF) events as revealed by recent ocean-floor observation studies, we perform a trial simulation of earthquake cycles in the Tonankai district by taking the characteristics of the 1944 Tonankai earthquake and assuming that slow earthquakes occur on numerous small asperities. Our simulation results show that the increase of moment release rate of shallower VLF events in the pre-seismic stage of a megathrust earthquake is higher than that of deeper VLF events. This increase may make leveling change due to VLF swarms detectable at Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET). We also introduce the time series of hydraulic pressure data at DONET, comparing with the leveling change expected from our numerical simulation. Since leveling change due to shallower VLF swarms is so local as to be incoherent, removal of the moving-averaged data from the data stacked by four nearby observation points in the same node may be useful to detect the short-term local leveling change.  相似文献   
44.
Devonian evaporites and associated sedimentary rocks in the Norilsk region were contact metamorphosed during emplacement of mafic sills that form part of the end-Permian (~252 Ma) Siberian Traps. We present mineralogical, geochemical and Sr–Nd isotopic data on sedimentary rocks unaffected by metamorphism, and meta-sedimentary rocks from selected contact aureoles at Norilsk, to examine the mechanisms responsible for magma-evaporite interaction and its relation to the end-Permian environmental crisis. The sedimentary rocks include massive anhydrite, rock salt, dolostone, calcareous siltstones and shale, and the meta-sedimentary rocks comprise calcareous hornfels, siliceous hornfels and minor meta-anhydrite and meta-sandstone. Contact metamorphism took place at low pressure and at maximum temperatures corresponding to the phlogopite-diopside stability field. Calcareous hornfels have high CaO, MgO, CΟ2, SΟ3, low SiO2 and initial Sr isotopic ratios of 0.7079–0.7092, features indicative of calcareous siltstone protoliths. Siliceous hornfels, in contrast, have high SiO2, Al2O3, Na2O, low in other major element oxides and initial Sr isotopic ratios of 0.7083–0.7152, consistent with pelitic or shaley protoliths. Loss of CO2 in a subset of calcareous hornfels can be explained by decarbonation reactions during metamorphism, but release of SO2 from evaporites cannot be accounted for by a similar mechanism. Occurrences of wollastonite and a variety of hydrous minerals in the calcareous hornfels are consistent with equilibration with hydrous fluid, which was capable of leaching large quantities of anhydrite in the presence of dissolved NaCl. In this way, substantial sediment-derived sulfur could have been mobilized, incorporated into the magmatic system and released to the atmosphere. The release of CO2 and SO2 from Siberian evaporites added to the variety of toxic gases generated during metamorphism of organic matter, coal and rock salt, contributing to the end-Permian environmental crisis.  相似文献   
45.
Abstract

The effect of the El Niño Southern Oscillation (ENSO) on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia, is demonstrated. This research used rainfall data collected between 1978 and 2008. The results suggest a relationship between ENSO events and the trend in rainfall observed in the study area. Further analyses show that El Niño events have a stronger effect on the rainfall compared to La Niña events. El Niño events were also correlated to the increase in the number of days with less than 1 mm of rainfall in the dry season. The analysis reveals that the impact of El Niño events on rainfall in dry seasons is intensifying annually. Furthermore, ENSO events are not the only factors affecting rainfall trends in the observed area. Other factors, such as deforestation, may also affect the trend.

Editor Z.W. Kundzewicz

Citation Susilo, G.E., Yamamoto, K., Imai, T., Ishii, Y., Fukami, H., and Sekine, M., 2013. The effect of ENSO on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia. Hydrological Sciences Journal, 58 (3), 539–548.  相似文献   
46.
A next-generation drilling system, equipped with a thermal drilling device, is proposed for glacier ice. The system is designed to penetrate glacier ice via melting of the ice and continuously analyze melt-water in a contamination-free sonde. This new type of drilling system is expected to provide analysis data in less time and at less cost than existing systems. Because of the limited number of parameters that can be measured, the proposed system will not take the place of conventional drilling systems that are used to obtain ice cores; however, it will provide a useful method for quickly and simply investigating glacier ice.An electro-thermal drilling device is one of the most important elements needed to develop the proposed system. To estimate the thermal supply required to reach a target depth in a reasonable time, laboratory experiments were conducted using ice blocks and a small sonde equipped solely with heaters. Thermal calculations were then performed under a limited range of conditions. The experiments were undertaken to investigate the effects of the shape and material of the drill head and heater temperature on the rate of penetration into the ice. Additional thermal calculations were then performed based on the experimental results.According to the simple thermal calculations, if the thermal loss that occurs while heat is transferred from the heater to ice (in melting the ice) is assumed to be 50%, the total thermal supply required for heaters in the sonde and cable is as follows: (i) 4.8 kW (sonde) plus 0 W (cable) to penetrate to 300 m depth over 10 days into temperate glacier ice for which the temperature is 0 °C at all depths and to maintain a water layer along 300 m of cable; (ii) 10 kW (sonde) plus 19–32 kW (cable) to penetrate to 1000 m depth over 1 month into cold glacier ice for which the temperature is −25 °C at the surface and 0 °C at 1000 m depth and to maintain a water layer along 1000 m of cable; and (iii) 19 kW (sonde) plus 140–235 kW (cable) to penetrate to 3000 m depth over 2 months into an ice sheet for which the temperature is −55 °C at the surface and 0 °C at 3000 m depth and to maintain a water layer along 3000 m of cable. The thermal supply required for the cable is strongly affected by the thickness of the water layer, cable diameter, and the horizontal distance from the ice wall at which the ice temperature was maintained at its initial temperature. A large thermal supply is required to heat 3000 m of cable in an ice sheet (scenario (iii) above), but penetration into glacier ice (scenarios (i) and (ii) above) could be realistic with the use of a currently employed generator.  相似文献   
47.
Normal mode approaches for calculating viscoelastic responses of self-gravitating and compressible spherical earth models have an intrinsic problem of determining the roots of the secular equation and the associated residues in the Laplace domain. To bypass this problem, a method based on numerical inverse Laplace integration was developed by Tanaka et al. (2006, 2007) for computations of viscoelastic deformation caused by an internal dislocation. The advantage of this approach is that the root-finding problem is avoided without imposing additional constraints on the governing equations and earth models. In this study, we apply the same algorithm to computations of viscoelastic responses to a surface load and show that the results obtained by this approach agree well with those obtained by a time-domain approach that does not need determinations of the normal modes in the Laplace domain. Using the elastic earth model PREM and a convex viscosity profile, we calculate viscoelastic load Love numbers (h, l, k) for compressible and incompressible models. Comparisons between the results show that effects due to compressibility are consistent with results obtained by previous studies and that the rate differences between the two models total 10–40%. This will serve as an independent method to confirm results obtained by time-domain approaches and will usefully increase the reliability when modeling postglacial rebound.  相似文献   
48.
Geological observations in the Horoman area, south‐central Hokkaido, show that the Horoman peridotite complex of the Hidaka metamorphic belt is a tectonic slice about 1200 m thick. The peridotite slab is intercalated into a gently east‐dipping structure. The underlying unit is a Cretaceous–Paleogene accretionary complex. Riedel shear planes in the sedimentary layers of the accretionary complex near the structural bottom of the peridotite slab indicate top‐to‐the‐west (thrust) displacement. The overlying unit is composed of felsic–pelitic gneisses and mafic–felsic intrusive rocks (the Hidaka metamorphic rocks). The boundary surface between the peridotite complex and metamorphic rocks forms a domal structure. Microstructures of sheared metamorphic rocks near the structural top of the peridotite slab indicate top‐to‐the‐east (normal) displacement. The results combined with previous studies suggest that the Horoman peridotite complex was emplaced onto the Asian margin (Northeast Japan) during the collision between the Asian margin and the Hidaka crustal block.  相似文献   
49.
Recently, the occurrence of slow earthquakes such as low-frequency earthquakes and very low-frequency earthquakes have been recognized at depths of about 30 km in southwest Japan and Cascadia. These slow earthquakes occur sometimes in isolation and sometimes break into chain-reaction, producing tremor that migrates at a speed of about 5–15 km/day and suggesting a strong interaction among nearby small asperities. In this study, we formulate a 3-D subduction plate boundary model with two types of small asperities chained along the trench at the depth of 30 km. Our simulation succeeds in representing various types of slow earthquakes including low-frequency earthquakes and rapid slip velocity in the same asperity, and indicates that interaction between asperities may cause the very low-frequency earthquakes. Our simulation also shows chain reaction along trench with propagation speed that can be made consistent with observations by adjusting model parameters, which suggests that the interactions also explain the observed migration of slow earthquakes.  相似文献   
50.
To examine the feasibility of using ecophysiological data from excised leaves for a meteorological simulation model of gas exchange, we compared the obtained gas exchange rates and the modelled ones using excised leaves and those using intact leaves. Instantaneous gas exchange rates of excised leaves and stomatal control in response to environmental conditions were not significantly different from those of attached leaves. Modelled gas exchange rates based on excised leaf data showed a good fit to the diurnal patterns of in situ measurements. This suggests that use of excised leaf data to predict gas exchange of intact leaves is permissible as long as the effects of excision are pre‐screened as described in this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号