首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   1篇
大气科学   1篇
地球物理   16篇
地质学   57篇
海洋学   2篇
天文学   44篇
  2023年   1篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   10篇
  2017年   7篇
  2016年   8篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   1篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1995年   2篇
  1994年   2篇
  1992年   3篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
111.
The challenges of ‘standard’ model of solar flares motivated by new observations with the spacecrafts and ground-based telescopes are presented. The most important problems are in situ heating of photospheric and chromospheric loop footpoints up to the coronal temperatures without precipitating particle beams accelerated in the corona, and the sunquakes which are unlikely to be explained by the impact of highenergy particles producing hard X-ray emission. There is also the long-standing ‘number problem’ in the physics of solar flares. It is shown that modern observations favored an important role of the electric currents in the energy release processes in the low solar atmosphere. Particle acceleration mechanism in the electric fields driven by the magnetic Rayleigh-Taylor instability in the chromosphere is proposed. The electric current value I ≥ 1010 A, needed for the excitation of super-Dreicer electric fields in the chromosphere is determined. It is shown that both Joule dissipation of the electric currents and the particles accelerated in the chromosphere can be responsible for in situ heating of the low solar atmosphere. Alternative model of the solar flare based on the analogy between the flaring loop and an equivalent electric circuit which is good tool for the electric current diagnostics is presented. Interaction of a current-carrying loop with the partially-ionized plasma of prominence in the context of particle acceleration is considered. The role of plasma radiation mechanism in the sub-THz emission from the chromosphere is discussed.  相似文献   
112.
The paper presents the results of study of ferromanganese carbonate rocks in the Sob area (Polar Urals), which is located between the Rai-Iz massif and the Seida–Labytnangi Railway branch. These rocks represent low-metamorphosed sedimentary rocks confined to the Devonian carbonaceous siliceous and clayey–siliceous shales. In terms of ratio of the major minerals, ferromanganese rocks can be divided into three varieties composed of the following minerals: (1) siderite, rhodochrosite, chamosite, quartz, ± kutnahorite, ± calcite, ± magnetite, ± pyrite, ± clinochlore, ± stilpnomelane; (2) spessartite, rhodochrosite, and quartz, ± hematite, ± chamosite; (3) rhodochrosite, spessartite, pyroxmanite, quartz ± tephroite, ± fridelite, ± clinochlore, ± pyrophanite, ± pyrite. In all varieties, the major concentrators of Mn and Fe are carbonates (rhodochrosite, siderite, kutnahorite, Mn-calcite) and chlorite group minerals (clinochlore, chamosite). The chemical composition of rocks is dominated by Si, Fe, Mn, carbon dioxide, and water (L.O.I.): total SiO2 + Fe2O 3 tot + MnO + L.O.I. = 85.6?98.4 wt %. The content of Fe and Mn varies from 9.3 to 55.6 wt % (Fe2O 3 tot + MnO). The Mn/Fe ratio varies from 0.2 to 55.3. In terms of the aluminum module AlM = Al/(Al + Mn + Fe), the major portion of studied samples corresponds to metalliferous sediments. The δ13Ccarb range (–30.4 to–11.9‰ PDB) corresponds to authigenic carbonates formed with carbon dioxide released during the microbial oxidation of organic matter in sediments at the dia- and/or catagenetic stage. Ferromanganese sediments were likely deposited in relatively closed seafloor zones (basin-traps) characterized by periodic stagnation. Fe and Mn could be delivered from various sources: input by diverse hydrothermal solutions, silt waters in the course of diagenesis, river discharges, and others. The diagenetic delivery of metals seems to be most plausible. Mn was concentrated during the stagnation of bottom water in basin-traps. Interruption of stagnation promoted the precipitation of Mn. The presence of organic matter fostered a reductive pattern of postsedimentary transformations of metalliferous sediments. Fe and Mn were accumulated initially in the oxide form. During the diagenesis, manganese and iron oxides reacted with organic matter to make up carbonates. Relative to manganese carbonates, iron carbonates were formed under more reductive settings and higher concentrations of carbon dioxide in the interstitial solution. Crystallization of manganese and iron silicates began already at early stages of lithogenesis and ended during the regional metamorphism of metalliferous sediments.  相似文献   
113.
Low-frequency pulsations of 22 and 37 GHz microwave radiation detected during solar flares are analyzed. Several microwave bursts observed at the Metsähovi Radio Observatory are studied with time resolutions of 100 and 50 ms. A fast Fourier transformation with a sliding window and the Wigner-Ville method are used to obtain frequency-time diagrams for the low-frequency pulsations, which are interpreted as natural oscillations of coronal magnetic loops; the dynamical spectra of the pulsations are synthesized for the first time. Three types of low-frequency fluctuations modulating the flare microwave radiation can be distinguished in the observations. First, there are fast and slow magneto-acoustic oscillations with periods of 0.5–0.8 s and 200–280 s, respectively. The fast magneto-acoustic oscillations appear as trains of narrow-band signals with durations of 100–200 s, a positive frequency drift dν/dt=0.25 MHz/min, and frequency splitting δν=0.01–0.05 Hz. Second, there are natural oscillations of the coronal magnetic loops as equivalent electrical circuits. These oscillations have periods of 0.5–10 s and positive or negative frequency drift rates dν/dt=8×10?3 Hz/min or dν/dt=?1.3×10?2 Hz/min, depending on the phase of the radio outburst. Third, there are modulations of the microwave radiation by short periodic pulses with a period of 20 s. The dynamical spectra of the low-frequency pulsations supply important information about the parameters of the magnetic loops: the ratio of the loop radius to its length r/L≈0.1, the plasma parameter β≈10?3, the ratio of the plasma densities outside and inside the loop ρei≈10?2, and the electrical current flowing along the loop I≈1012 A.  相似文献   
114.
Pulsations of mm-wave emission with a period of about 5 s, which occurred during the impulsive phase of the flare of June 22, 1989, are investigated. It has been shown that these pulsations can be driven by Alfvénic oscillations of a flare loop excited due to upward motion of the chromospheric evaporated plasma. A method is proposed to determine the density and temperature of the evaporated plasma as well as the flare loop magnetic field and loop length in terms of Alfvénic oscillations of the loop and bremsstrahlung mechanism of mm-wave emission. The estimation of evaporated plasma energy has shown that for the flare of June 22, 1989 the energy content in electron beams is insufficient for chromospheric plasma evaporation. It is not excluded that the main energy release process occurs in the chromosphere.  相似文献   
115.
We propose a model explaining the presence of vast regions of partially ionized gas in the interstellar medium. The circumstellar envelope of a hot star absorbs soft ionizing radiation, but transmits an appreciable fraction of the hard photons, which are absorbed much more weakly than photons with energies close to the ionization limit. For this reason, the radiation attenuated by the envelope becomes harder, and can penetrate to larger distances. For stars hotter than 50 000 K, the transition zone between the ionized and neutral gas can extend to tens or hundreds of parsecs. Thus, a region of partially ionized hydrogen, with a small gradient of the degree of ionization without a well-defined inner HII zone, can form in the interstellar medium.  相似文献   
116.
Primary magmas at Oldoinyo Lengai: The role of olivine melilitites   总被引:3,自引:1,他引:3  
The paper describes olivine melilitites at Oldoinyo Lengai, Tanzania, and from tuff cones from the Tanzanian rift valley in the vicinity of Oldoinyo Lengai. Oldoinyo Lengai is the only active carbonatite volcano and is distinguished by its alkali-rich natrocarbonatites. Lengai is also unique for its extreme peralkaline silicate lavas related directly to the natrocarbonatites. Primitive olivine melilitites are, according to their Mg# and Ni, Cr contents, the only candidates in the Lengai area for primary melt compositions. Incompatible trace elements, including REE, constrain the melting process in their sub-lithospheric sources to very low degrees of partial melting in the garnet stability field. The strong peralkaline trend at Oldoinyo Lengai is already recognisable in these primary or near-primary melts. More evolved olivine melilitites, with Mg# < 60 allow the fractionation line in its major and trace element expressions to be followed. Nevertheless, a large compositional gap separates the olivine melilitites and olivine-poorer melilitites from the phonolites and nephelinites that form the bulk of the Lengai cone. These silicate lavas show a high degree of peralkalinity and are highly evolved with very low Mg, Ni and Cr. Prominent examples of the recent evolution are the combeite–wollastonite nephelinites that are unique for Lengai. In their Sr, Nd, and Pb isotope relationships the olivine melilitites define a distinct group with the most depleted Sr and Nd ratios and the most radiogenic Pb isotopes. They are closest to a supposed HIMU end member of the Lengai evolution, which is characterised by an extreme spread in isotopic ratios, explained as a mixing line between HIMU and EM1-like mantle components.  相似文献   
117.
We investigate the close analogy between the solar radio emission with a quasi-harmonic spectrum structure and one of the microwave emission components of the Crab pulsar in the form of the so-called zebra pattern. The radio emission mechanism of this component can be provided by instability at double plasma resonance and can be realized in extraordinary (for a radio pulsar) conditions, namely in a nonrelativistic plasma with a relatively weak magnetic field. We point out possible models of the emission source in the form of a magnetic trap or a neutral current sheet with a transverse magnetic field localized in the corotating region of the pulsar magnetosphere far from the neutron star surface.  相似文献   
118.
Mineralogy and Petrology - A new mineral hermannjahnite, ideally CuZn(SO4)2, was found in the sublimates of Saranchinaitovaya fumarole, Naboko scoria cone, where the recent Fissure Tolbachik...  相似文献   
119.
A model for the high-frequency (20–2400 Hz) quasi-periodic oscillations (QPOs) of magnetars based on the representation of coronal magnetic loops as equivalent electric RLC circuits is proposed. The observed periods of the QPOs and their high Q-factor (Q ≈ 104–105) are explained. It follows from the model that the QPOs can be excited not only in the tail of a flare but also before the main pulse. The parameters of the QPO source at the “ringing tail” stage of the flare from SGR 1806–20 on December 27, 2004, have been estimated: electric current I ≈ 3 × 1019 A, minimum magnetic field strength B min ≈ 1013 G, and electron density n ≈ 2 × 1016 cm−3.  相似文献   
120.
Geology of Ore Deposits - The scheme of geomorphic evolution of the region was substantially refined, compared to the previous understanding, based on the results of geologic and geomorphic...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号