首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3180篇
  免费   576篇
  国内免费   928篇
测绘学   264篇
大气科学   609篇
地球物理   830篇
地质学   1783篇
海洋学   344篇
天文学   96篇
综合类   370篇
自然地理   388篇
  2024年   21篇
  2023年   65篇
  2022年   192篇
  2021年   199篇
  2020年   189篇
  2019年   208篇
  2018年   224篇
  2017年   199篇
  2016年   189篇
  2015年   185篇
  2014年   208篇
  2013年   228篇
  2012年   207篇
  2011年   204篇
  2010年   218篇
  2009年   205篇
  2008年   160篇
  2007年   168篇
  2006年   121篇
  2005年   101篇
  2004年   94篇
  2003年   94篇
  2002年   68篇
  2001年   75篇
  2000年   113篇
  1999年   100篇
  1998年   80篇
  1997年   84篇
  1996年   99篇
  1995年   72篇
  1994年   77篇
  1993年   56篇
  1992年   36篇
  1991年   27篇
  1990年   24篇
  1989年   20篇
  1988年   18篇
  1987年   15篇
  1986年   6篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1936年   1篇
  1933年   1篇
排序方式: 共有4684条查询结果,搜索用时 15 毫秒
121.
Research on land use cover change (LUCC) has reached a mature stage and has formed a relatively complete scientific system. However, most studies analyzed the LUCC process from the view of land use types ignoring the integrality and systematicness of the land use system, which brought certain constraints to understanding the complexity and systematicness of land use process scientifically. Using the Modern Yellow River Delta (MYRD) of China as the study area, this research introduced the complex network analysis method to the study of the LUCC process by using 9 periods of land use data between 1976 and 2014 to build 8 stages of complex networks. The values of node degree, betweenness, changing proportions, and average shortest path in the networks were calculated to identify the key land use types, changing models of land use types, and the stability of land use system. Additionally, main parts of complex networks of the period from 1976 to 1995 and the period from 1995 to 2014 were selected to evaluate the changing characteristics of the LUCC process. The results indicated the area and proportion of natural wetland kept reducing, but the area and proportion of artificial wetland or non-wetland continued rising. The bare land, reed, bush, and cultivated land were the key land use types of the LUCC process. In the past 38 years, beach, bare land, reed and bush had been the output types, and the building land and salt pan had been the input types. The LUCC process has been a transfer process of natural wetland to artificial wetland and non-wetland in the past 38 years, which could be divided into land accretion process (1976 to 1995) and construction process (1995 to 2014). The land ecosystem was unstable for the period from 1990 to 2006.  相似文献   
122.
123.
In order to study the degree of influence and control mechanism to groundwater flow field caused by land creation engineering in the hilly and gully area of the Loess Plateau, based on the geological and engineering conditions of the first stage project of Yan’an new district in China, numerical simulation of groundwater flow is carried out by the Feflow and GIS technologies. From the simulation, punning measure relatively reduces infiltration recharge and artificial gravel drain increases groundwater seepage. The basic characteristics of groundwater flow field is controlled by the old and new topographies in the whole study area, and artificial gravel drain plays an auxiliary role in accelerating groundwater drawdown upstream and promotes groundwater rise downstream. According to differences of groundwater level and declining percentages of hydraulic gradient in the main and secondary gullies, dewatering of artificial gravel drain in the secondary gully is more effective than that in the main gully, which will yet play an important role in the future. The study results will make contributions to understand groundwater response to land creation engineering and will be beneficial to take necessary measures to prevent collapse of loess and failure of building foundation in the hilly and gully area of the Loess Plateau.  相似文献   
124.
This article presents a case history of determination of effective depth of prefabricated vertical drains (PVDs) under embankment loading on a very soft clay deposit in central China, near Jiujiang, Jiangxi Province. The height of the embankment was 5.3 m and construction time was about one year. The PVDs were installed to a depth of 8.5 m at a spacing of 1.5 m in a triangular pattern. Field observations and the finite element method (FEM) were employed to analyze the performance of the soft deposit during embankment construction. The influential depth of the embankment loading was evaluated based on settlement, excess pore pressure, and stress increase in subsoil, both from the observed data and FEM analysis. The effective PVD depth was determined in the following ways: (1) the depth of 5% subsoil settlement of surface settlement; (2) vertical stress increase in subsoil of 25% in-situ stress; and (3) consolidation time/PVD depth relation by FEM. Based on the analysis, the effective depth of PVDs was determined to be between 10 and 12.8 m for this field case.  相似文献   
125.
The pharmacokinetic profiles and sulfamethoxazole (SMX) acetylation process in turbot reared at 18°C were investigated. Either SMX (parent drug) or its acetylized metabolite, N4-acetylsulfamethoxazole (AcSMX), was administered intravascularly to turbot at a dosage of 50 mg/kg BW. Serum concentrations of the parent drug and its metabolite were both measured by HPLC, and the changes in concentration over time were analyzed in two- and non-compartment models because SMX treatment produced multiple peaks. The results demonstrated that the elimination half-life of the parent drugs, SMX and AcSMX, were 159.2 and 5.9 h, respectively. The apparent volume of distribution was 0.2 and 0.8 L/kg, and the clearance was 0.038 and 0.222 L/(h·kg), for SMX and AcSMX, respectively. SMX acetylation in turbot was 2.8%, and the deacetylation of AcSMX was 0.2%. These findings may be useful in optimizing SMX dosage regimens in turbot aquaculture.  相似文献   
126.
正For thousands of years,a large number of peripheral rivers have been flowing into deserts,the water from which then will infiltrate underground or evaporate into the air.When desert sand engulfs and humans retreat,precious freshwater resources lie dormant all the year round,making almost no contribution to human progress.  相似文献   
127.
128.
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号