首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   10篇
大气科学   3篇
地球物理   40篇
地质学   44篇
海洋学   17篇
天文学   5篇
综合类   1篇
自然地理   6篇
  2021年   13篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   3篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1980年   2篇
排序方式: 共有116条查询结果,搜索用时 31 毫秒
31.
The goal of cathodic protection is to prevent corrosion by maintaining buried pipelines at a constant potential with respect to the surrounding soil. In practice, however, the implementation is very complicated since many factors can contribute to the current flowing off the pipe. Design requires characterization of the parameters impacting the corrosion process, such as soil resistivity, size of the pipe and quality of the coating.In the present paper, we have studied the effect of geomagnetic fields on the pipe-induced currents considering it as an additional cause of corrosion. A theoretical method implemented to model the induced currents was tested in a previous work and the effect during disturbed days was quantified. This theoretical model indicated that the intensity of the current induced in a pipeline by the varying geomagnetic field depends on the intensity and rate of change of the field and the electrical resistivity of the soil. This induced current is in equilibrium with the host current and there is no current drainage between the pipeline and the host until, along the length of the pipeline, the host resistivity becomes different. At that point, current must flow between the pipe and host in order to establish a new equilibrium. It is this drainage current, flowing between the pipeline and the host, which causes corrosion problems.Following these results, experimental tests were performed in Tierra del Fuego. In this zone, a geophysical study was made to determine the discontinuities in soil resistivities and simultaneous measurements of the geomagnetic field and the drainage of current were recorded at different sites. The results obtained from the correlation of the data are consistent with the theoretical predictions.  相似文献   
32.
The effect of heat and illumination with visible light on the oxidation of pyrite with dissolved molecular oxygen in solutions between pH 2 and 6 has been investigated using a combination of surface science experiments and batch oxidation experiments. The rate of the oxidation of pyrite is strongly dependent on temperature. It is, however, not possible to cast the temperature dependence in a simple Arrhenius equation because the magnitude of the activation energy depends on the progress variable chosen. Activation energies based on proton release rate, sulfate release rate, and total iron release rate vary by as much as 40 kJ mol-1, suggesting that the oxidation mechanism of the sulfur and iron component of pyrite are largely independent of each other. This difference in mechanism can also explain why the reaction rates on the basis of these three different progress variables do not show the same pH dependence. Exposed to visible light, the rate of pyrite oxidation is under most conditions accelerated by less than a factor of two. Some of this acceleration may be accounted for by a light-induced heating of the pyrite surface. Surface science experiments employing photoelectron spectroscopy show no evidence for significant changes in the chemical composition of the surface as a function of exposure to visible light. The batch sorption experiments show, however, that the reaction stoichiometry changes somewhat, which indicates that there might be a change in reaction mechanism as a result of exposure to visible light.  相似文献   
33.
Mixed layer depth (MLD) variability from seasonal to decadal time scales in the Bay of Biscay is studied in this work. A hydrographic time series running since 1991 in the study area, a climatology of the upper layer vertical structure based on the topology of this temperature profile time series and a one-dimensional water column model have been used for this purpose. The prevailing factors driving MLD variability have been determined with detail, and agreement with observations is achieved. Tests carried out to investigate climatological profile skill to reproduce the upper layer temporal evolution have demonstrated its ability to simulate variability at seasonal time scales and reproduce the most conspicuous events observed. This has enabled us to carry out a reconstruction of the MLD variability for the last 60 years in the study area. Favourable sequence of intense mixing events explains interannual differences and cases of extraordinary deepening of winter mixed layer. The negative phase of the Eastern Atlantic pattern seems to determine important interannual variability through intense episodes of cooling and mixing as in winter 2005 in the Bay of Biscay. Low-frequency variability is also observed. A very striking and unexpected shallower winter MLD during the 1970s and 1980s than those observed from 1995 has been found. Simulation results support this counter-intuitive outcome of shallower winter mixed layers concurrent with generalized upper water warming trends reported on several occasions for the area. The long-term trends in MLD seem related with decadal variability in the North Atlantic Oscillation, being in phase and opposition with other deepening-shallowing cycles found from subtropical-to-subpolar areas in the North Atlantic.  相似文献   
34.
Mangroves in Northwestern Mexico are vital to maintain coastal environments healthy, to provide nutrients for several food chains, and to supply valuable goods and services that sustain and improve human livelihoods. Many of these values offer a range of opportunities for economic development that attract workers, investors and developers. Recently, federal privatization policies have promoted an accelerated coastal development of this region to obtain large profits in short times, creating competing and overlapping interests to use coastal environments and control key resources. Such intense developments are modifying the ecological conditions of many coastal areas, threatening the provision of important ecosystem services to society. After years of centralized decisions, new paradigms are needed to achieve a coastal management that ensures long-term ecosystem maintenance, fair resource use and social equity. Recognizing the multiplicity of actors involved in coastal management and using a qualitative research methodology, we identified and explored the perspectives of different key stakeholders in the states of Baja California Sur and Sonora, Mexico, to better understand their views on mangroves use and management as well as the interaction among them. We discuss similarities and/or discrepancies found among stakeholders’ perceptions by describing their central ideas and identifying overlapping interests that may create conflicts when defining development and conservation programs or formulating policies. This information also intends to encourage further research on the social-ecological system of the coasts in Northwestern Mexico and to contribute to address coastal management issues in integrated ways that consider the social dimension through documenting stakeholders’ narratives in the future.  相似文献   
35.
This work presents an evaluation of various methods for in situ high‐precision Sr and Pb isotopic determination in archaeological glass (containing 100–500 μg g?1 target element) by nanosecond laser ablation multi‐collector‐inductively coupled plasma‐mass spectrometry (ns‐LA‐MC‐ICP‐MS). A set of four soda‐lime silicate glasses, Corning A–D, mimicking the composition of archaeological glass and produced by the Corning Museum of Glass (Corning, New York, USA), were investigated as candidates for matrix‐matched reference materials for use in the analysis of archaeological glass. Common geological reference materials with known isotopic compositions (USGS basalt glasses BHVO‐2G, GSE‐1G and NKT‐1G, soda‐lime silicate glass NIST SRM 610 and several archaeological glass samples with known Sr isotopic composition) were used to evaluate the ns‐LA‐MC‐ICP‐MS analytical procedures. When available, ns‐LA‐MC‐ICP‐MS results for the Corning glasses are reported. These were found to be in good agreement with results obtained via pneumatic nebulisation (pn) MC‐ICP‐MS after digestion of the glass matrix and target element isolation. The presence of potential spectral interference from doubly charged rare earth element (REE) ions affecting Sr isotopic determination was investigated by admixing Er and Yb aerosols by means of pneumatic nebulisation into the gas flow from the laser ablation system. It was shown that doubly charged REE ions affect the Sr isotope ratios, but that this could be circumvented by operating the instrument at higher mass resolution. Multiple strategies to correct for instrumental mass discrimination in ns‐LA‐MC‐ICP‐MS and the effects of relevant interferences were evaluated. Application of common glass reference materials with basaltic matrices for correction of ns‐LA‐MC‐ICP‐MS isotope data of archaeological glasses results in inaccurate Pb isotope ratios, rendering application of matrix‐matched reference materials indispensable. Correction for instrumental mass discrimination using the exponential law, with the application of Tl as an internal isotopic standard element introduced by pneumatic nebulisation and Corning D as bracketing isotopic calibrator, provided the most accurate results for Pb isotope ratio measurements in archaeological glass. Mass bias correction relying on the power law, combined with intra‐element internal correction, assuming a constant 88Sr/86Sr ratio, yielded the most accurate results for 87Sr/86Sr determination in archaeological glasses  相似文献   
36.
We present a multi‐proxy approach to reconstructing Holocene climate conditions in northeastern Spain based on an excellent correlation among the lamina thickness, colour parameters and isotope (δ18O and δ13C) variations recorded in a speleothem. An age model constructed from five U/Th dates and annual lamina counting suggests that the uppermost 14.7 cm of the MO‐7 stalagmite grew between 7.2 and 2.5 ka before present but experienced a growth hiatus from 4.9 to 4.3 ka. Three spectral analysis methods were applied to 11 time series. The results reveal common solar periodicities on decennial (Gleissberg cycle) and centennial (De Vries‐Suess cycle) scales. The onset of Holocene carbonate precipitation in the MO‐7 stalagmite appears to be associated with a cold, wet period, whereas the hiatus and the end of growth are related to warm, dry periods. This environmental trend fits well within the regional Holocene climate.  相似文献   
37.
Wood researchers increasingly rely on remote-sensing products to augment field information about wood deposits in river corridors. The availability of very high-resolution (<1 m) satellite imagery makes capturing wood over greater spatial extents possible, but previous studies have found difficulty in automatically extracting wood deposits due to the challenge in distinguishing wood from spectrally similar corridor features such as sand. We also lack knowledge on the spectral properties of different wood deposit types in multiple depositional environments. In this work, we explore image classification work-flows for four wood deposit types in three North American environments: in-channel jams deposited in the Tatshenshini River in Alaska, USA; a wood raft on the Slave River in Northwest Territories, Canada; and wood deposited along a lakeshore and coastal embayment in the Mackenzie River Delta in Northwest Territories, Canada. We compare classification results of object-based and pixel-based image analysis with supervised [support vector machine (SVM)] and unsupervised (ISO clustering) classifiers. We evaluate several accuracy assessment parameters and achieve overall classification accuracies of 65–99%, showing automated image classification is a possible approach for analysing wood across larger areas. We also find that wood sensitivity in the classification ranged from 0 to 95%, indicating that some techniques are better suited to wood capture than others. We find that supervised classification produced more accurate wood maps, though there is large variation in classification outcomes across environments related to spatial arrangement of wood in the landscape. We discuss the influence of depositional environment on classification and provide recommendations for designing a wood classification work-flow.  相似文献   
38.
2020 is the year of wildfire records. California experienced its three largest fires early in its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its surface. More than 18 million hectares of forest and bushland burned during the 2019–2020 fire season in Australia, killing 33 people, destroying nearly 2500 homes, and endangering many endemic species. The direct cost of damages is being counted in dozens of billion dollars, but the indirect costs on water-related ecosystem services and benefits could be equally expensive, with impacts lasting for decades. In Australia, the extreme precipitation (“200 mm day −1 in several location”) that interrupted the catastrophic wildfire season triggered a series of watershed effects from headwaters to areas downstream. The increased runoff and erosion from burned areas disrupted water supplies in several locations. These post-fire watershed hazards via source water contamination, flash floods, and mudslides can represent substantial, systemic long-term risks to drinking water production, aquatic life, and socio-economic activity. Scenarios similar to the recent event in Australia are now predicted to unfold in the Western USA. This is a new reality that societies will have to live with as uncharted fire activity, water crises, and widespread human footprint collide all-around of the world. Therefore, we advocate for a more proactive approach to wildfire-watershed risk governance in an effort to advance and protect water security. We also argue that there is no easy solution to reducing this risk and that investments in both green (i.e., natural) and grey (i.e., built) infrastructure will be necessary. Further, we propose strategies to combine modern data analytics with existing tools for use by water and land managers worldwide to leverage several decades worth of data and knowledge on post-fire hydrology.  相似文献   
39.
Fuzzy logic has been used for lithology prediction with remarkable success. Several techniques such as fuzzy clustering or linguistic reasoning have proven to be useful for lithofacies determination. In this paper, a fuzzy inference methodology has been implemented as a MATLAB routine and applied for the first time to well log data from the German Continental Deep Drilling Program (KTB). The training of the fuzzy inference system is based on the analysis of the multi-class Matthews correlation coefficient computed for the classification matrix. For this particular data set, we have found that the best suited membership function type is the piecewise linear interpolation of the normalized histograms; that the best combination operator for obtaining the final lithology degrees of membership is the fuzzy gamma operator; and that all the available properties are relevant in the classification process. Results show that this fuzzy logic-based method is suited for rapidly and reasonably suggesting a lithology column from well log data, neatly identifying the main units and in some cases refining the classification, which can lead to a better interpretation. We have tested the trained system with synthetic data generated from property value distributions of the training data set to find that the differences in data distributions between both wells are significant enough to misdirect the inference process. However, a cross-validation analysis has revealed that, even with differences between data distributions and missing lithologies in the training data set, this fuzzy logic inference system is able to output a coherent classification.  相似文献   
40.
The Yacoraite River and its tributaries run down the eastern slope of the Aguilar Range. It is one of the tributaries of the Rio Grande, located in Quebrada de Humahuaca, a UNESCO World Heritage site. The Aguilar underground mine (Pb–Ag–Zn) is located in the upper reaches of the Yacoraite River drainage basin. The aim of this work is to characterize the presence of heavy metals in water and sediments of the Yacoraite River and to identify their sources. The analysis shows the seasonal variation of heavy metals concentration in water and their relation with the World Health Organization (WHO) limits established for human consumption. The Yacoraite basin is naturally anomalous in some metals and some elements, such as As which is controlled by the chemical composition of regional lithology. During the wet season, Al, Co, Mo and Pb concentrations in water samples are higher than during the dry season; in addition, these metals are also higher than WHO limit values. High enrichment factors for Ba, Mo, Pb, Zn and Cd were found in Casa Grande stream, indicating the direct influence of the mining activities. Cd, Pb and Zn are present in the Aguilar ore minerals, such as sphalerite and galena. Sediments collected during the dry season show a drastic increase in the concentration of As, Pb, Ba, Zn, Cd and Mn. The Müller geo-accumulation index in Casa Grande indicates that it is a highly polluted stream. The concentrations of As, Pb, Ba, Zn, Cd are also high in Yacoraite River: Security Quality Guidelines indicates toxicity. A decrease in enrichment factors and geo-accumulation indices observed in sediments indicates the occurrence of precipitation/adsorption processes in the river to restore the equilibrium composition. Strict environmental controls in Aguilar Mine are necessary to avoid the uncontrolled input of toxic metals in Casa Grande stream and Yacoraite River.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号