首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   0篇
测绘学   1篇
大气科学   10篇
地球物理   11篇
地质学   36篇
海洋学   19篇
综合类   1篇
自然地理   5篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   2篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1993年   1篇
  1985年   3篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
71.
72.
Structural interaction between dissolved fluorine and silicate glass (25°C) and melt (to 1400°C) has been examined with 19F and 29Si MAS NMR and with Raman spectroscopy in the system Na2O-Al2O3-SiO2 as a function of Al2O3 content. Approximately 3 mol.% F calculated as NaF dissolved in these glasses and melts. From 19F NMR spectroscopy, four different fluoride complexes were identified. These are (1) Na-F complexes (NF), (2) Na-Al-F complexes with Al in 4-fold coordination (NAF), (3) Na-Al-F complexes with Al in 6-fold coordination with F (CF), and (4) Al-F complexes with Al in 6-fold, and possibly also 4-fold coordination (TF). The latter three types of complexes may be linked to the aluminosilicate network via Al-O-Si bridges.The abundance of sodium fluoride complexes (NF) decreases with increasing Al/(Al + Si) of the glasses and melts. The NF complexes were not detected in meta-aluminosilicate glasses and melts. The NAF, CF, and TF complexes coexist in peralkaline and meta-aluminosilicate glasses and melts.From 29Si-NMR spectra of glasses and Raman spectra of glasses and melts, the silicate structure of Al-free and Al-poor compositions becomes polymerized by dissolution of F because NF complexes scavenge network-modifying Na from the silicate. Solution of F in Al-rich peralkaline and meta-aluminous glasses and melts results in Al-F bonding and aluminosilicate depolymerization.Temperature (above that of the glass transition) affects the Qn-speciation reaction in the melts, 2Q3 ⇔ Q4 + Q2, in a manner similar to other alkali silicate and alkali aluminosilicate melts. Dissolved F at the concentration level used in this study does not affect the temperature-dependence of this speciation reaction.  相似文献   
73.
The solubility behavior of H2O in melts in the system Na2O-SiO2-H2O was determined by locating the univariant phase boundary, melt = melt + vapor in the 0.8-2 GPa and 1000°-1300°C pressure and temperature range, respectively. The NBO/Si-range of the melts (0.25-1) was chosen to cover that of most natural magmatic liquids. The H2O solubility in melts in the system Na2O-SiO2-H2O (XH2O) ranges between 18 and 45 mol% (O = 1) with (∂XH2O/∂P)T∼14-18 mol% H2O/GPa. The (∂XH2O/∂P)T is negatively correlated with NBO/Si (= Na/Si) of the melt. The (∂XH2O/∂T)P is in the −0.03 to +0.05 mol% H2O/°C range, and is negatively correlated with NBO/Si. The [∂XH2O/∂(NBO/Si)]P,T is in the −3 to −8 mol% H2O/(NBO/Si) range. Melts with NBO/Si similar to basaltic liquids (∼0.6-∼1.0) show (∂XH2O/∂T)P<0, whereas more polymerized melts exhibit (∂XH2O/∂T)P>0. Complete miscibility between hydrous melt and aqueous fluid occurs in the 0.8-2 GPa pressure range for melts with NBO/Si ≤0.5 at T >1100°C. Miscibility occurs at lower pressure the more polymerized the melt.  相似文献   
74.
From experimental data in the systems Na2O-Al2O3-SiO2-H2O, K2O-Al2O3-SiO2-H2O at 1100°C, and CaO-Al2O3-SiO2-H2O at 1200°C in the 1-2 GPa pressure range, the solution behavior of the individual oxides in coexisting H2O-saturated silicate melts and silicate-saturated aqueous fluids appears to be incongruent. Recalculated on an anhydrous basis, in the CaO-Al2O3-SiO2-H2O system, CaOfluid/CaOmelt < 1, whereas in the Na2O-Al2O3-SiO2-H2O and K2O-Al2O3-SiO2-H2O systems, K2Ofluid/K2Omelt and Na2Ofluid/Na2Omelt both are greater than 1. The aqueous fluids are depleted in alumina relative to silicate melt.In the Na2O-Al2O3-SiO2-H2O, K2O-Al2O3-SiO2-H2O, and CaO-Al2O3-SiO2-H2O systems, fluid/melt partition coefficients for the individual oxides range between ∼0.005 and 0.35 depending on oxide, bulk composition and pressure. The alkali partition coefficients are about an order of magnitude higher than that of CaO. Alumina and silica partition coefficient values in the CaO-Al2O3-SiO2-H2O system are 10-20% of the values for the same oxides in the Na2O-Al2O3-SiO2-H2O and K2O-Al2O3-SiO2-H2O systems.Positive correlations among individual partition coefficients and oxide concentrations in the aqueous fluids are consistent with complexing in the fluid that involves silicate polymers associated with alkalis and alkaline earths and aluminosilicate complexes where alkalis and alkaline earths may serve to charge-balance Al3+, which is, perhaps, in tetrahedral coordination. Alkali aluminosilicate complexes in aqueous fluid appear more stable than Ca-aluminosilicate complexes.  相似文献   
75.
Diopside (CaMgSi2O6) and pseudowollastonite (CaSiO3) have been studied by X-ray powder diffraction and Raman spectroscopy up to their respective melting points. In agreement with previous unit-cell parameters determinations below 1100 K, thermal expansion of diopside along the a and c axis is much smaller than along the b axis. For pseudowollastonite, the axis expansivity increases slightly in the order b>a>c. For both minerals, the change in unit-cell angles is very small and there are no anomalous variations of the other unit-cell parameters near the melting point. With increasing temperatures, the main changes observed in the Raman spectra are strong increases of the linewidths for those bands which mainly represent Si−O−Si bending (near 600 cm−1) or involve Ca−O or Mg−O stretching, in the range 270–500 cm−1 for diopside, and 240–450 cm−1 for pseudowollastonite. At temperatures near the onset of calorimetric premelting effects, this extensive band widening results in a broad Raman feature that can no longer be deconvoluted into its individual components. No significant changes affect the Si−O streching modes. For both diopside and pseudowollastonite, premelting appears to be associated with enhanced dynamics of the alkaline-earth elements. This conclusion contrasts markedly with that drawn for sodium metasilicate in which weaker bonding of sodium allows the silicate framework to distort and deform in such a way as to prefigure the silicate entities present in the melt. Received 16 July 1997 / Revised, accepted: 6 March 1998  相似文献   
76.
The isostructural lithium (Li2SiO3) and sodium (Na2SiO3) metasilicates have been investigated from room temperature up to the melting point by single-crystal Raman spectroscopy and energy-dispersive X-ray powder diffraction. The unit-cell parameters and Raman frequencies of Li2SiO3 vary regularly with temperature up to the melting point, which is consistent with the lack of premelting effects in calorimetric measurements. In contrast, Na2SiO3 undergoes a transition at about 850 K from orthorhombic Cmc 21 symmetry, to a lower symmetry (possibly Pmc 21), and shows near 1200 K changes in the Raman spectra that correlate well with the premelting effects as determined from calorimetry observations. In both compounds, a high alkali mobility likely sets in several hundreds of degrees below the melting point. Premelting in Na2SiO3 is associated with extensive deformation of the silicate chains as evidenced near the melting point by similarities in the Raman spectra of the crystalline and liquid phases.  相似文献   
77.
2005 年10-11 月中美联合考察队在各拉丹冬峰北部果曲冰川平坦的粒雪盆 (33o34'37.8"N, 91o10'35.3"E, 5720 m a.s.l.) 钻取了一支冰芯, 通过对该冰芯进行多参数定年, 恢复了青藏高原中部各拉丹冬地区近70 年来降水中δ18O 的变化历史。根据冰芯中季风期和非季风期δ18O 值与临近气象台站气温的正相关性, 重建了该地区70 年来的春季和夏季的气温变化。结果表明, 各拉丹冬冰芯中δ18O 记录的春季和夏季升温趋势非常明显; 根据回归分析, 冰芯中非季风期的δ18O 每增大(或减小) 1‰相当于春季气温升高(或降低) 1.3 oC; 季风 期的δ18O 每增大(或减小) 1‰相当于夏季气温升高(或降低) 0.4 oC; 各拉丹冬冰芯中δ18O 记录恢复的春季和夏季气温与北半球春季和夏季的气温变化具有一致的趋势, 但各拉丹冬地区的增温幅度比北半球要大, 同时春季的增温幅度也高于夏季。  相似文献   
78.
79.
The bottom water in the >300 m deep Lower St. Lawrence Estuary (LSLE) is persistently hypoxic in contrast to the normoxic bottom waters in the Gulf of St. Lawrence (GSL). We photographed the seabed at 11 stations in the Estuary and Gulf of St. Lawrence (EGSL) during the summers 2006 and 2007 and analysed the images to identify bioturbation traces (lebensspuren) and benthic macrofauna. The objective was to identify the environmental variables that influence the density and diversity of benthic macrofauna and bioturbation traces, and the differences that exist among regions with high, medium and low oxygen levels in the bottom water. The bottom water oxygen concentration is the variable that best explains the densities of total-traces as well as surface-traces. However, the density of these traces was higher in hypoxic regions than in well-oxygenated regions. The higher density of traces in the hypoxic region of the LSLE is mainly due to the activities of the surface deposit feeder Ophiura sp., which occurs in large numbers in this region. Possible explanations explored are stress behaviour of the organisms in response to hypoxia and different benthic macrofauna community structures between the hypoxic regions of the LSLE and the normoxic regions of the GSL. In the former, surface deposit feeders and low-oxygen tolerant species dominate over suspension feeders and low-oxygen intolerant species.  相似文献   
80.
Solubility and speciation of nitrogen in silicate melts have been investigated between 1400 and 1700 °C and at pressures ranging from 10 to 30 kbar for six different binary alkali and alkaline-earth silicate liquids and a Ca-Mg-alumino silicate. Experiments were performed in a piston-cylinder apparatus. The nitrogen source is silver azide, which breaks down to Ag and molecular N2 below 300 °C. At high pressure and temperature, the nitrogen content may be as high as 0.7 wt% depending on the melt composition, pressure, and temperature. It increases with T, P and the polymerization state of the liquid. Characterization by Raman spectroscopy and 15N solid state MAS NMR indicates that nitrogen is not only physically dissolved as N2 within the melt structure like noble gases, but a fraction of nitrogen interacts strongly with the silicate network. The most likely nitrogen-bearing species that can account for Raman and NMR results is nitrosyl group. Solubility data follow an apparent Henry’s law behavior and are in good agreement with previous studies when the nitrosyl content is low. On the other hand, a significant departure from a Henry’s law behavior is observed for highly depolymerized melts, which contain more nitrosyl than polymerized melts. Possible solubility mechanisms are also discussed. Finally, a multi-variant empirical relation is given to predict the relative content of nitrosyl and molecular nitrogen as a function of P, T, and melt composition and structure. This complex speciation of nitrogen in melts under high pressure may have significant implication concerning crystal-melt partitioning of nitrogen as well as for potential elemental and isotopic fractionation of nitrogen in the deep Earth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号