首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
测绘学   2篇
大气科学   1篇
地球物理   6篇
地质学   7篇
海洋学   2篇
天文学   1篇
综合类   1篇
自然地理   1篇
  2024年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
Deterioration mechanisms of tuffs in Midas monument   总被引:3,自引:0,他引:3  
Slightly weathered white and pink tuffs of the Midas monument have deterioration problems. In this study, depths and characteristics of the weathering zones developed within the tuffs are investigated through optical microscopy, X-ray diffractometry (XRD), chemical analyses, scanning electron microscopy (SEM) and some index parameters. Accelerated weathering tests including wetting–drying, freezing–thawing and salt crystallization are performed, and durability assessment methods are used to predict the durabilities of the tuffs. The findings are compared with field observations. By examining quantitative weathering indices and comparing them with thin section studies, it is found that thin section analyses of the crystals, LoI, and WPI are good indicators to quantify the depth of weathering for the tuffs. However, thin section studies have limited value for fine-grained tuffaceous matrix. The chemical weathering of the tuffs produces weathered zones that are 4.5-cm thick within the white tuff and 2.5-cm thick within the pink tuff. Physical weathering causes scaling of outer layers of the tuffs and fracturing of feldspars along their cleavage planes. However, variations of the index properties of the tuffs due to weathering are not so significant to quantify the weathering depths in the tuffs. Among the accelerated weathering tests, salt crystallization is found to be the most destructive environmental condition. Pigeon droppings rich in NO31− are found to be the main source of soluble salt at the Midas monument. The salt transported up by capillary rise due to surface water causes spalling of the tuffs in the capillary zone. Surface water and salt of any kind in the close vicinity of the monument should be totally eliminated for the purpose of conservation. Field observations and the durability equations reveal that the white tuff is less durable than the pink tuff. Wet-to-dry strength ratio yields a better stone durability assessment among various durability methods used in this study.  相似文献   
12.
Floods have been the most severe natural disasters in the West Black Sea Region of Turkey for many years; therefore Ulus Basin is selected as a study area for a thorough hydrologic flood analysis. The lack of embankments around the Ulus River and careless changes to the riverbed made by villagers, resulted in major flood events in the basin, causing significant damage in the area. In this study, the hydrodynamic characteristics of the basin and the riverbed are determined by calibrating the hydraulic module of the MIKE 11 modeling system with the observed 1991 flood. Then, for the 25-, 50- and 100-year floods the highest water levels in the river are forecasted by integration of the MIKE 11 hydrologic and hydraulic modules. Afterwards, inundation maps are obtained by using together the hydraulic and GIS modules of the MIKE 11 system.  相似文献   
13.
Owing to their complex character, modeling flow patterns of narrow straits has always been a challenge, even with the numerical techniques of today. This study was aimed at predicting vertical current profiles of a given point in a narrow strait, the Strait of Istanbul. On account of the speed and simplicity it offers, and of its remarkable success in solving complex problems, the feed forward back propagation (FFBP) artificial neural network (ANN) technique was chosen for this study. The model was built on 7039 hours of concurrent measurements of current profiles, meteorological conditions, and surface elevations. The model predicted 12 outputs of East and North velocity components at different depths in a given location. Various alternative models with different inputs and neuron numbers were evaluated attaining the best model by trial and error. Predictions from proposed ANN model were in accordance with the observations with average root mean square error of 0.16 m/s. The same input parameters were then used to build models that predicted current velocities 1–12 h into the future. Results of these predictions show good overall agreement with observations and that FFBP ANN can be used as a reliable tool for forecasting current profiles in straits.  相似文献   
14.
This study focuses on the evaluation of seismic safety of unreinforced masonry buildings in Turkey by using fragility curves generated for two behavior modes of load bearing walls: in-plane and out-of-plane. During generation of fragility curves, a force-based approach has been used. There exist two limit states in terms of base shear strength for in-plane behavior mode and flexural strength for out-of-plane behavior mode. To assess the seismic vulnerability of unreinforced masonry buildings in Turkey, fragility curves generated for in-plane behavior were verified by the observed damage during the 1995 Dinar (Turkey) earthquake and fragility curves generated for out-of-plane behavior were verified by the observed damage during the 2010 Elaz?? (Turkey) earthquake. The verification results reveal that the proposed fragility-based procedure can provide an alternative for the seismic safety evaluation of unreinforced masonry buildings in Turkey. Using this procedure, it becomes possible to investigate a large population of masonry buildings located in regions of high seismic risk in a short period of time. The obtained results are valuable in the sense that they can be used as a database during the development of strategies for pre-earthquake planning and risk mitigation for earthquake prone regions of Turkey.  相似文献   
15.
Soil salt accumulation is a widespread problem leading to diminished crop yield and threatening food security in many regions of the world. The soil salinization problem is particularly acute in areas that lack adequate soil water drainage and where a saline shallow water table (WT) is present. In this study, we present laboratory-scale column experiments, extending over a period of more than 400 days that focus on the processes contributing to soil salinization. We specifically examine the combined impact of soil compaction, surface water application model and water quality on salt dynamics in the presence of a saline shallow WT. The soil columns (60 cm height and 16 cm diameter) were packed with an agricultural soil with bulk densities of 1.15 and 1.34 g/cm−3 for uncompacted and compacted layers, respectively, and automatically monitored for water content, salinity and pressure. Two surface water compositions are considered: fresh (deionized, DI) and saline water (~3.4 mS/cm). To assess the sensitivity of compaction on salt dynamics, the experiments were numerically modelled with the HYDRUS-1D computer program. The results show that the saline WT led to rapid salinization of the soil column due to capillarity, with the salinity reaching levels much higher than that at the WT. However, compaction layer provided a barrier that limited the downwards moisture percolation and solute transport. Furthermore, the numerical simulations showed that the application of freshwater can temporarily reverse the accumulation of salts in agricultural soils. This irrigation strategy can help, in the short-term, alleviate soil salinization problem. The soil hydraulic properties, WT depth, water quality, evaporation demand and the availability of freshwater all play a role in the practicability of such short-term solutions. The presence of a saline shallow WT would, however, rapidly reverse these temporary measures, leading to the recurrence of topsoil salinization.  相似文献   
16.
We assess tsunami hazards in San Diego Bay, California, using newly identified offshore tsunami sources and recently available high resolution bathymetric/topographic data. Using MOST (Titov and Synolakis, J Waterways Port Coastal Ocean Eng ASCE 124(4):57–171, 1998), we simulate locally, regionally and distant-generated tsunamis. Local tsunami source models use more realistic fault and landslide data than previous efforts. With the exception of the Alaska-Aleutian Trench, modeling results suggest that local sources are responsible for the largest waves within the San Diego Bay and Mission Bay. Because San Diego Bay is relatively well protected by North Island and the Silver Strand, the wave heights predicted are consistently smaller inside the harbor than outside. However, historical accounts, recent tsunamis and our predictions show that San Diego Bay is vulnerable to strong tsunami induced currents. More specifically, large currents are expected inside the harbor for various distant and local tsunami sources with estimated flow velocities exceeding 100 cm/s. Such currents have been damaging to harbor facilities, such as wharves and piers, and may cause boats to break from moorings and ram into adjacent harbor structures, as observed in recent historic tsunamis. More recently, following the M w 8.8 February 27, 2010 Chile earthquake, tsunami-currents damaged docks/piers in Shelter Island confirming our findings. We note that the first generation of inundation maps in use in San Diego County by emergency management was based on much larger “worst case but realistic scenarios” (Synolakis et al. 2002a), which reflected the understanding of offshore hazards pervasive ten years ago. Large inundation and overland flow depths were observed primarily in local tsunami source simulations. In particular, locally induced tsunamis appear capable to overtop the Silver Strand. The results suggest that further work needs to be carried out with respect to local tsunami sources as they seem to have worse impact in the San Diego region than previously thought but probably low probability of occurrence. We also predict that a coastal community can be devastated simultaneously by large waves inundating shores and large currents in locations with small flow depths.  相似文献   
17.
Calayır  Yusuf  Sayın  Erkut  Yön  Burak 《Natural Hazards》2012,60(2):703-713
Numerous studies demonstrated the possibility of utilizing fly ash in the construction of embankments, road subgrades and stabilization of a wide range of soils. The present investigation aims at determining the optimum fly ash (OFA) for mechanical stabilization of expansive soils. Four different soils were tested for compaction characteristics and unconfined compressive strength with and without the addition of fly ash to determine the OFA. The liquid limit (LL) and the fraction coarser than 425 μ (CF) of these soils range from 50 to 120 and 25 to 70%, respectively. An experimental strategy called two-factor factorial design was adopted in the conducting experiments. LL and CF present in the soil are the two factors considered to influence the OFA content. Factorial experimentation enables relative quantification of the effect of each factor as well as their interaction with the OFA. The OFA was found to range from 5 to 40% depending upon the two factors. The LL and the CF were found to have dominating influence on OFA content in that order, whereas the interaction effect of these two factors was marginal to fair. A statistical regression model was developed for determination of the OFA in terms of the influencing factors. The validity of the model developed was verified by conducting laboratory tests on two more soils that were not used in the development of the model. Swell potential and swelling pressure of expansive soils were reduced to non-critical levels when treated with OFA.  相似文献   
18.
Urbanization is a demographic, economic, and land transformation process. Building construction and operation are integral aspects of urban land use change and contribute to material and energy resources consumption and the resulting carbon dioxide (CO2) emissions in urban areas. In this paper, we ask two questions regarding the urbanization process: 1) Do the land, material, and energy use efficiencies associated with the construction and operation of buildings increase over time? 2) Do the gains in resource use efficiencies offset the increases in resource demands due to the magnitude of urbanization? To answer these questions, we use a systematic approach similar to a material flow analysis and apply it to the Pearl River Delta, a rapidly urbanizing region in China. We use a combination of satellite data and official statistics to evaluate changes in urban population density and building density from 1988 to 2008. Both density measures decrease from 1988 to 2003; after 2003, building density increases while population density continues to decline. We also track the indirect impacts of urban land expansion on material and energy demands and associated CO2 emissions using concrete and heating/cooling as proxies for building construction and operation, respectively. Throughout the study period, structural changes and efficiency gains decrease the demand per unit floor area for both building materials and energy. However, the efficiency gains are outstripped by the magnitude of urban expansion, therefore leading to an increase in the demand for resources and CO2 emissions per capita. Our results show that focusing only on gains in efficiency for individual buildings without considering the scale of urban expansion results in underestimate of the cumulative energy, material, and greenhouse gas emissions impacts of urbanization. We emphasize the distinction between the rates versus the accumulations of these impacts over spatial and temporal scales. We discuss the relevance of the Environmental Kuznets approaches to tackling environmental impacts that are cumulative in nature and may lead to irreversible changes in the environment. We conclude that tracking the energy, materials, and emissions impacts of urbanization requires a multi-scale approach that ranges from the individual building to the urban region.  相似文献   
19.
The numerical and proportional distributions of benthic macroinvertebrates in Tunca (Tundja, Tundzha) River (Edirne/Turkey) were determined from July 2002 to June 2003 at monthly intervals at four different stations. It was found that the benthic macrofauna consisted of 63% Oligochaeta, 24% Chironomidae larvae, and 13% Varia by numbers. According to the Shannon‐Wiener index, Tunca River had a diversity of 1.36; station 2 and September were found to have the highest diversity while station 4 and December to have the poorest. According to Bray‐Curtis similarity index, stations 2 and 3 and April and May were found to be the most similar to each other while stations 1 and 4 and August and January were found to be the most different from each other for the dynamics of the benthic macrofauna. Also some physicochemical parameters of the water (water temperature, electrical conductivity, pH, dissolved oxygen, chloride, total hardness, NO3‐N, NO2‐N, sulfate, phosphate, biochemical and chemical oxygen demands) were analyzed. Pearson correlation index supported the relationships between the dynamics of organisms and physicochemical variables. The relation between the number of macroinvertebrates and pH (r = +0.57, P < 0.05) was direct proportional while the relation between the number of macroinvertebrates and NO3‐N (r = –0.99, P < 0.05) was inverse proportional. Furthermore, the Chironomidae larvae of Bryophaenocladius muscicola and Mesosmittia flexuella were new records for Turkish Thrace region. High pH and supersaturated oxygen levels, hard water quality, second quality levels of NO3‐N, BOD, COD and fourth quality levels of NO2‐N as well as the density of 490 individuals m–2 for 124 taxa and the diversity of 1.36 showed that similar studies should be repeated periodically in Tunca to determine the future of the river.  相似文献   
20.
This paper presents a methodology for the evaluation of land condition and for the allocation of areas requiring restoration. It is based on spatial simulation analysis and fuzzy logic. The method is demonstrated in a restoration allocation problem within a military training area in Texas. Fuzzy logic is integrated with spatial analysis through Geographic Information Systems (GIS) to make land condition assessment geographically specific. Two sources of uncertainty in Land Condition Analysis are considered in this paper. First is the uncertainty due to incomplete information on land condition. Second is the uncertainty emanating from identifying the condition of a particular parcel of land. The first is addressed by using sequential Gaussian simulation, a geostatistical tool. Erosion status is selected as the land condition factor, and uncertainty associated with it is considered in this study. Land allocation is based on fuzzy logic to reflect the continuous transition between different land conditions and the minimization of loss that is expected to occur in the case of misallocation. Various forms of loss functions are used for allocating areas in need of restoration. An important result of the study is a map showing the areas allocated for restoration. The proposed method is compared to two alternative methods with varying degrees of determinism and uncertainty. The incorporation of uncertainty led to better allocation strategies and results that are more realistic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号