首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
地球物理   1篇
地质学   8篇
海洋学   2篇
自然地理   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2003年   2篇
  1994年   2篇
  1991年   1篇
  1988年   1篇
  1981年   2篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
Assimilation of image sequences in numerical models   总被引:1,自引:0,他引:1  
Understanding and forecasting the evolution of geophysical fluids is a major scientific and societal challenge. Forecasting algorithms should take into account all the available information on the considered dynamic system. The variational data assimilation (VDA) technique combines all these informations in an optimality system (O.S.) in a consistent way to reconstruct the model inputs. VDA is currently used by the major meteorological centres. During the last two decades about 30 satellites were launched to improve the knowledge of the atmosphere and of the oceans. They continuously provide a huge amount of data that are still underused by numerical forecast systems. In particular, the dynamic evolution of certain meteorological or oceanic features (such as eddies, fronts, etc.) that the human vision may easily detect is not optimally taken into account in realistic applications of VDA. Image Assimilation in VDA framework can be performed using 'pseudo-observation' techniques: they provide apparent velocity fields, which are assimilated as classical observations. These measurements are obtained by certain external procedures, which are decoupled with the considered dynamic system. In this paper, we suggest a more consistent approach, which directly incorporates image sequences into the O.S.  相似文献   
12.
The Wilde Kirche reef complex (Early-Late Rhaetian) grew as an isolated carbonate structure within the shallow Kössen Basin. At the Triassic/Jurassic boundary a single brief (c. 10–50 ka) period of subaerial exposure occurred. The preserved karst profile (70 m thick) displays a vadose zone, enhanced dissolution at a possible palaeo-watertable (5–15 m below the exposure surface), and a freshwater phreatic zone. Karst porosity was predominantly biomouldic. Primary cavities and biomoulds were enlarged and interconnected in the freshwater phreatic zone; cavity networks developed preferentially in patch reef facies. Resubmergence of the reef complex allowed minor modification of the palaeokarst surface by sea floor dissolution and Fe-Mn crust deposition on a sediment-starved passive margin. Fibrous calcite (FC). radiaxial fibrous calcite (RFC) and fascicular optic calcite (FOC) cements preserved as low Mg calcite (LMC) are abundant in primary and karst dissolution cavities. FC cement is restricted to primary porosity, particularly as a synsedimentary cement at the windward reef margin. FC, RFC and FOC contain microdolomite inclusions and show patchy non-/bright cathodoluminescence. δ18O values of non-luminescent portions (interpreted as near original) are − 1.16 to − 1.82%0 (close to the inferred δ18O of calcite precipitated from Late Triassic sea water). δ13C values are constant (+3 to + 2.2%0). These observations suggest FC, RFC and FOC were originally marine high Mg calcite (HMC) precipitates, and that the bulk of porosity occlusion occurred not in the karst environment but in the marine environment during and after marine transgression. The HMC to LMC transition may have occurred in contact with meteoric water only in the case of FC cement. The most altered (brightly luminescent) portions of RFC/FOC cements yield δ18O=−2.44 to − 5.8%0, suggesting HMC to LMC alteration at up to 34°C. in the shallow burial environment at depths of 180–250 m. Abundant equant cements with δ18O =−4·1 to −7.1%0 show crisp, uniform or zoned dull luminescence. They are interpreted as unaltered cements precipitated at 33–36°C at 200–290 m burial depth, from marine-derived fluids under a slightly enhanced geothermal gradient. Fluids carrying the equant cements may have induced the HMC to LMC transition in the fibrous cements.  相似文献   
13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号