首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1019篇
  免费   55篇
  国内免费   6篇
测绘学   13篇
大气科学   91篇
地球物理   268篇
地质学   387篇
海洋学   93篇
天文学   135篇
综合类   11篇
自然地理   82篇
  2023年   6篇
  2022年   15篇
  2021年   30篇
  2020年   26篇
  2019年   32篇
  2018年   43篇
  2017年   35篇
  2016年   59篇
  2015年   52篇
  2014年   56篇
  2013年   70篇
  2012年   48篇
  2011年   72篇
  2010年   50篇
  2009年   72篇
  2008年   48篇
  2007年   45篇
  2006年   35篇
  2005年   19篇
  2004年   33篇
  2003年   25篇
  2002年   27篇
  2001年   15篇
  2000年   9篇
  1999年   12篇
  1998年   7篇
  1997年   13篇
  1996年   13篇
  1995年   3篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   8篇
  1986年   3篇
  1985年   10篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   7篇
  1978年   2篇
  1977年   5篇
  1974年   3篇
  1973年   2篇
  1972年   5篇
排序方式: 共有1080条查询结果,搜索用时 15 毫秒
31.
Aquatic fungi growing on dead fragments of submerged plants   总被引:1,自引:0,他引:1  
The authors investigated the dead fragments of 22 species of submerged plants in the water from three limnological and trophical different water bodies (spring, river and pond). A total of 184 species of aquatic fungi, including 119 zoosporic and 65 conidial species were found on the fragments investigated plants. The most common fungus species were Aphanomyces laevis, Saprolegnia litoralis, Pythium rostratum (zoosporic fungi) and Acrodictys elaeidicola, Anguillospora longissima, Angulospora aquatica, Lemonniera aquatica, Mirandina corticola, Tetracladium marchalianum, Tetracladium maxiliformis, Trinacrium subtile (conidial fungi).

Most fungus species were observed on the specimens of Elodea canadensis (33 fungus species), Hippuris vulgaris f. submersa (33), Myriophyllum spicatum (34) and Potamogeton crispus (33), fewest on Ceratophyllum demersum (24), Fontinalis dalicarlica and Potamogeton nitens (each 25).

The most fungi were growing in the water from River Supraśl (107), the fewest in the water from Pond Dojlidy (99). Some aquatic fungus species were observed in the water of only one of the three water bodies – in Pond Dojlidy (30), in Spring Jaroszówka (32) and in the River Supraśl (39) species. Seventy-five species growing only on fragments of single submerged plants. A number of zoosporic and conidial species (22 and four, respectively) appeared new to Polish waters. Out of these 119 zoosporic species, some are known as parasites or necrotrophs of fish.  相似文献   

32.
Regional models of extreme rainfall must address the spatial variability induced by orographic obstacles. However, the proper detection of orographic effects often depends on the availability of a well‐designed rain gauge network. The aim of this study is to investigate a new method for identifying and characterizing the effects of orography on the spatial structure of extreme rainfall at the regional scale, including where rainfall data are lacking or fail to describe rainfall features thoroughly. We analyse the annual maxima of daily rainfall data in the Campania region, an orographically complex region in Southern Italy, and introduce a statistical procedure to identify spatial outliers in a low order statistic (namely the mean). The locations of these outliers are then compared with a pattern of orographic objects that has been a priori identified through the application of an automatic geomorphological procedure. The results show a direct and clear link between a particular set of orographic objects and a local increase in the spatial variability of extreme rainfall. This analysis allowed us to objectively identify areas where orography produces enhanced variability in extreme rainfall. It has direct implications for rain gauge network design criteria and has led to promising developments in the regional analysis of extreme rainfall. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
33.
Boxcore 99LSSL‐001 (68.095° N, 114.186° W; 211 m water depth) from Coronation Gulf represents the first decadal‐scale marine palynology and late Holocene sediment record for the southwestern part of the Northwest Passage. The record was studied for organic‐walled microfossils (dinoflagellate cysts, non‐pollen palynomorphs), pollen, terrestrial spores, and sediment characteristics. 210Pb, 137Cs, and three accelerator mass spectrometry 14C dates constrain the chronology. Three prominent palaeoenvironmental zones were identified. During the interval AD 1470–1680 (Zone I), the climate was warmer and wetter than at present, and environmental conditions were more favourable to biological activity and northward boreal forest migration, with reduced sea‐ice and a longer open‐water (growing) season. The interval AD 1680–1940 (Zone II) records sea‐ice increase, and generally cool, polar conditions during the Little Ice Age. During AD 1940–2000 (Zone III), organic microfossils indicate an extended open‐water season and decreased sea‐ice, with suggested amelioration surpassing that of Zone I. Although more marine studies are needed to place this record into an appropriate context, the succession from ameliorated (Zone I) to cooler, sea‐ice influenced conditions (Zone II) and finally to 20th‐century warming (Zone III) corresponds well with several terrestrial climatic records from the neighbouring mainland and Victoria Island, and with lower‐resolution marine records to the west. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
34.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
35.
Palaeo-ice sheets are important analogues for understanding contemporary ice sheets, offering a record of ice sheet behaviour that spans millennia. There are two main approaches to reconstructing palaeo-ice sheets. Empirical reconstructions use the available glacial geological and chronological evidence to estimate ice sheet extent and dynamics but lack direct consideration of ice physics. In contrast, numerically modelled simulations implement ice physics, but often lack direct quantitative comparison with empirical evidence. Despite being long identified as a fruitful scientific endeavour, few ice sheet reconstructions attempt to reconcile the empirical and model-based approaches. To achieve this goal, model-data comparison procedures are required. Here, we compare three numerically modelled simulations of the former British–Irish Ice Sheet with the following lines of evidence: (a) position and shape of former margin positions, recorded by moraines; (b) former ice-flow direction and flow-switching, recorded by flowsets of subglacial bedforms; and (c) the timing of ice-free conditions, recorded by geochronological data. These model–data comparisons provide a useful framework for quantifying the degree of fit between numerical model simulations and empirical constraints. Such tools are vital for reconciling numerical modelling and empirical evidence, the combination of which will lead to more robust palaeo-ice sheet reconstructions with greater explicative and ultimately predictive power.  相似文献   
36.
Urban floods pose a societal and economical risk. This study evaluated the risk and hydro-meteorological conditions that cause pluvial flooding in coastal cities in a cold climate. Twenty years of insurance claims data and up to 97 years of meteorological data were analysed for Reykjavík, Iceland (64.15°N; <100 m above sea level). One third of the city's wastewater collection system is combined, and pipe grades vary from 0.5% to 10%. Results highlight semi-intensive rain (<7 mm/h; ≤3 year return period) in conjunction with snow and frozen ground as the main cause for urban flood risk in a climate which undergoes frequent snow and frost cycles (avg. 13 and 19 per season, respectively). Floods in winter were more common, more severe and affected a greater number of neighbourhoods than during summer. High runoff volumes together with debris remobilized with high winds challenged the capacity of wastewater systems regardless of their age or type (combined vs. separate). The two key determinants for the number of insurance claims were antecedent frost depth and total precipitation volume per event. Two pluvial regimes were particularly problematic: long duration (13–25 h), late peaking rain on snow (RoS), where snowmelt enhanced the runoff intensity, elongated and connected independent rainfall into a singular, more voluminous (20–76 mm) event; shorter duration (7–9 h), more intensive precipitation that evolved from snow to rain. Closely timed RoS and cooling were believed to trigger frost formation. A positive trend was detected in the average seasonal snow depth and volume of rain and snowmelt during RoS events. More emphasis, therefore, needs to be placed on designing and operating urban drainage infrastructure with regard to RoS co-acting with frozen ground. Furthermore, more detailed, routine monitoring of snow and soil conditions is important to predict RoS flood events.  相似文献   
37.
38.
The south‐west region of the Goulburn–Broken catchment in the south‐eastern Murray–Darling Basin in Australia faces a range of natural resource challenges. A balanced strategy is required to achieve the contrasting objectives of remediation of land salinization and reducing salt export, while maintaining water supply security to satisfy human consumption and support ecosystems. This study linked the Catchment Analysis Tool (CAT), comprising a suite of farming system models, to the catchment‐scale CATNode hydrological model to investigate the effects of land use change and climate variation on catchment streamflow and salt export. The modelling explored and contrasted the impacts of a series of different revegetation and climate scenarios. The results indicated that targeted revegetation to only satisfy biodiversity outcomes within a catchment is unlikely to have much greater impact on streamflow and salt load in comparison with simple random plantings. Additionally, the results also indicated that revegetation to achieve salt export reduction can effectively reduce salt export while having a disproportionately smaller affect on streamflows. Furthermore, streamflow declines can be minimized by targeting revegetation activities without significantly altering salt export. The study also found that climate change scenarios will have an equal if not more significant impact on these issues over the next 70 years. Uncertainty in CATNode streamflow predictions was investigated because of the effect of parameter uncertainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
39.
Based on geological and archaeological proxies from NW Russia and NE Estonia and on GIS‐based modelling, shore displacement during the Stone Age in the Narva‐Luga Klint Bay area in the eastern Gulf of Finland was reconstructed. The reconstructed shore displacement curve displays three regressive phases in the Baltic Sea history, interrupted by the rapid Ancylus Lake and Litorina Sea transgressions c. 10.9–10.2 cal. ka BP and c. 8.5–7.3 cal. ka BP, respectively. During the Ancylus transgression the lake level rose 9 m at an average rate of about 13 mm per year, while during the Litorina transgression the sea level rose 8 m at an average rate of about 7 mm per year. The results show that the highest shoreline of Ancylus Lake at an altitude of 8–17 m a.s.l. was formed c. 10.2 cal. ka BP and that of the Litorina Sea at an altitude of 6–14 m a.s.l., c. 7.3 cal. ka BP. The oldest traces of human activity dated to 8.5–7.9 cal. ka BP are associated with the palaeo‐Narva River in the period of low water level in the Baltic basin at the beginning of the Litorina Sea transgression. The coastal settlement associated with the Litorina Sea lagoon, presently represented by 33 Stone Age sites, developed in the area c. 7.1 cal. ka BP and existed there for more than 2000 years. Transformation from the coastal settlement back to the river settlement indicates a change from a fishing‐and‐hunting economy to farming and animal husbandry c. 4.4 cal. ka BP, coinciding with the time of the overgrowing of the lagoon in the Narva‐Luga Klint Bay area.  相似文献   
40.
Surface water oxygen and hydrogen isotopic values are commonly used as proxies of precipitation isotopic values to track modern hydrologic processes while proxies of water isotopic values preserved in lake and river sediments are used for paleoclimate and paleoaltimetry studies. Previous work has been able to explain variability in USA river‐water and meteoric‐precipitation oxygen isotope variability with geographic variables. These studies show that in the western United States, river‐water isotopic values are depleted relative to precipitation values. In comparison, the controls on lake‐water isotopic values are not well constrained. It has been documented that western United States lake‐water input values, unlike river water, reflect the monthly weighted mean isotopic value of precipitation. To understand the differing controls on lake‐ and river‐water isotopic values in the western United States, we examine the seasonal distribution of precipitation, evaporation and snowmelt across a range of seasonality regimes. We generate new predictive equations based on easily measured factors for western United States lake‐water, which are able to explain 69–63% of the variability in lake‐water hydrogen and oxygen isotopic values. In addition to the geographic factors that can explain river and precipitation values, lake‐water isotopic values need factors related to local hydrologic and climatic characteristics to explain variability. Study results suggest that the spring snowmelt runs off the landscape via rivers and streams, depleting river and stream‐water isotopic values. By contrast, lakes receive seasonal contributions of precipitation in proportion to the seasonal fraction of total annual precipitation within their watershed. Climate change may alter the ratio of snow to rain fall, affecting water resource partitioning between rivers and lakes and by implication of groundwater. Paleolimnological studies must account for the multiple drivers of water isotopic values; likewise, studies based on the isotopic composition of fossil material need to distinguish between species that are associated with rivers versus lakes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号