首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   546篇
  免费   16篇
  国内免费   9篇
测绘学   56篇
大气科学   28篇
地球物理   115篇
地质学   161篇
海洋学   32篇
天文学   145篇
综合类   4篇
自然地理   30篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   19篇
  2017年   22篇
  2016年   17篇
  2015年   12篇
  2014年   22篇
  2013年   27篇
  2012年   21篇
  2011年   29篇
  2010年   25篇
  2009年   36篇
  2008年   19篇
  2007年   23篇
  2006年   33篇
  2005年   19篇
  2004年   18篇
  2003年   12篇
  2002年   17篇
  2001年   14篇
  2000年   14篇
  1999年   9篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   7篇
  1994年   11篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   4篇
  1989年   8篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   8篇
  1983年   6篇
  1982年   6篇
  1981年   4篇
  1980年   9篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1974年   3篇
  1972年   4篇
  1971年   3篇
  1970年   5篇
排序方式: 共有571条查询结果,搜索用时 15 毫秒
491.
It is well established that elevated sea temperatures cause widespread coral bleaching, yet confusion lingers as to what facet of extreme temperatures is most important. Utilizing long-term in situ datasets, we calculated nine thermal stress indices and tested their effectiveness at segregating bleaching years a posteriori for multiple reefs on the Florida Reef Tract. The indices examined represent three aspects of thermal stress: (1) short-term, acute temperature stress; (2) cumulative temperature stress; and (3) temperature variability. Maximum monthly sea surface temperature (SST) and the number of days >30.5 °C were the most significant; indicating that cumulative exposure to temperature extremes characterized bleaching years. Bleaching thresholds were warmer for Florida than the Bahamas and St. Croix, US Virgin Islands reflecting differences in seasonal maximum SST. Hind-casts showed that monthly mean SST above a local threshold explained all bleaching years in Florida, the Bahamas, and US Virgin Islands.  相似文献   
492.
The Newania carbonatite complex of Rajasthan, India is one of the few dolomite carbonatites of the world, and oddly, does not contain alkaline silicate rocks thus providing a unique opportunity to study the origin and evolution of a primary carbonatite magma. In an attempt to characterize the mantle source, the source of carbon, and the magmatic and post-magmatic evolution of Newania carbonatites, we have carried out a detailed stable carbon and oxygen isotopic study of the complex. Our results reveal that, in spite of being located in a metamorphic terrain, these rocks remarkably have preserved their magmatic signatures in stable C and O isotopic compositions. The δ13C and δ18O variations in the complex are found to be results of fractional crystallization and low temperature post-magmatic alteration suggesting that like other carbonatites, dolomite carbonatites too fractionate isotopes of both elements in a similar fashion. The major difference is that the fractional crystallization of dolomite carbonatites fractionates oxygen isotopes to a larger extent. The modes of δ13C and δ18O variations in the complex, ?4.5?±?1‰ and 7?±?1‰, respectively, clearly indicate its mantle origin. Application of a multi-component Rayleigh isotopic fractionation model to the correlated δ13C versus δ18O variations in unaltered carbonatites suggests that these rocks have crystallized from a CO2 + H2O fluid rich magma, and that the primary magma comes from a mantle source that had isotopic compositions of δ13C ~ ?4.6‰ and δ18O ~ 6.3‰. Such a mantle source appears to be a common peridotite mantle (δ13C = ?5.0?±?1‰) whose carbon reservoir has insignificant contribution from recycled crustal carbon. Other Indian carbonatites, except for Amba Dongar and Sung Valley that are genetically linked to Reunion and Kerguelen plumes respectively, also appear to have been derived from similar mantle sources. Through this study we establish that dolomite carbonatites are generated from similar mantle source like other carbonatites, have comparable evolutionary history irrespective of their association with alkaline silicate rocks, and may remain resistant to metamorphism.  相似文献   
493.
Down-core variations of granulometric, geochemical and mineral magnetism of a 70-cm long sediment core retrieved from the eastern Bay of Bengal abyssal region were studied to understand sedimentation pattern and sediment provenance during the last ~12 kyr BP. Based on down-core physical and elemental variations, three units were identified: unit 3 (70–43 cm) is a ~30 cm thick clayey silt organic carbon-rich (0.5–0.92%) turbidite probably delivered by the Brahmaputra River during the late Quaternary period. Units 2 (43–24 cm) and 1 (24–0 cm) represent enhanced and reduced supply of coarse-grained detrital sediments from the Ganges River during early and late Holocene period, respectively. Increased terrigenous supply dilutes calcium carbonate (CaCO3) and biogenic elements (P, Ba and Cu) in units 3 and 2. On the contrary, a reduction in detrital input enhances CaCO3 and biogenic elements in unit 1. Lithogenic elements (Ti, Al, K and Rb) and shale-normalized REE patterns in all three units suggest terrigenous source. The shift in provenance from the Brahmaputra to the Ganges derived sediments is evident by a sharp increase in sediment grain size, increased concentration and grain size assemblages of magnetic minerals, lithogenic elements concentration and Lan/Ybn ratio. This study highlights terrigenous dilution on biogenic sedimentation in the eastern Bay of Bengal sediments.  相似文献   
494.
The Antarctic lunar meteorite Meteorite Hills (MET) 01210 is a polymict regolith breccia, dominantly composed of mare basalt components. One relatively large (2.7 × 4.7 mm) basalt clast in MET 01210 (MET basalt) shows remarkable mineralogical similarities to the lunar-meteorite crystalline mare basalts Yamato (Y)-793169, Asuka (A)-881757, and Miller Range (MIL) 05035. All four basalts have similar rock texture, mineral assemblage, mineral composition, pyroxene crystallization trend, and pyroxene exsolution lamellae. The estimated TiO2 contents (∼2.0 wt%) of the MET basalt and MIL 05035 are close to the bulk-rock TiO2 contents of Y-793169 and A-881757. These similarities suggest that Y-793169, A-881757, MIL 05035, and the MET basalt came from the same basalt flow, which we designate the YAMM basalt. The source-basalt pairing of the YAMM is also supported by their similar REE abundances, crystallization ages (approx. 3.8-3.9 Ga), and isotopic compositions (low U/Pb, low Rb/Sr, and high Sm/Nd). The pyroxene exsolution lamellae, which are unusually coarse (up to a few microns) by mare standards, imply a relatively slow cooling in an unusually thick lava and/or subsequent annealing within a cryptomare. Reported noble gas and CRE data with close launch ages (∼1 Ma) and ejection depths (deeper than several meters) among the four meteorites further indicate their simultaneous ejection from the moon. Despite the marginally close terrestrial ages, pairing in the conventional Earth-entry sense seems unlikely because of the remote recovery sites among the YAMM meteorites.The high abundance (68%) of mare components in MET 01210 estimated from a two-component mixing model calculation could have resulted from either lateral mixing at a mare-highland boundary or vertical mixing in a cryptomare. The proportion of mare materials in MET 01210 is greater than in Apollo core samples at the mare-highland boundary. The burial depth (>several meters deep) inferred from the lack of surface irradiation of MET 01210 exceeds the typical mare regolith thickness (a few meters). Thus, the source of the YAMM meteorites is likely a terrain of locally high mare-highland mixing within a cryptomare. We searched for a possible source crater of the YAMM meteorites within the well-defined cryptomare, based on the multiple constraints obtained from this study and published data. An unnamed 1.4 km-diameter crater (53°W, 44.5°S) on the floor of the Schickard crater is the most suitable source for the YAMM meteorites.The 238U/204Pb (μ) value of the YAMM basalts is extremely low, relative to those of the Apollo mare basalts, but comparable to those of the Luna 24 very low-Ti basalts. The low-μ source indicates a derivation from a less differentiated mantle with a lack of KREEP components. Although the chemical sources of materials and heat source of melting might be independent, the heat source that generated the source magma of the YAMM and Luna 24 basalts may not be related to KREEP, unlike the case of the Apollo basalts. The distinct chemical and isotopic compositions of mantle sources between the Apollo basalts and the YAMM/Lunar 24 basalts imply differences in mantle composition and thermal evolution between the Procellarum KREEP Terrane (PKT) and non-PKT regions of the nearside.  相似文献   
495.
Abnormally high formation pressures are encountered worldwide, ranging in geological age from Cenozoic to Paleozoic, within a depth range of few hundred meters to as deep as six thousand meters while carrying out exploratory drilling by E and P companies. Several causes can increase formation fluid pressure i.e. rapid loading of sediments results compaction disequilibrium, thermal expansion of fluids, compression and/or upliftment of strata by tectonic forces, generation of oil and gas from organic matter and its volume expansion due to high thermal stress within the restricted pore volume in subsurface condition. Few global examples on overpressure occurrences have been compiled in the paper with special reference to Bengal Basin. Emphasis has been given on methodology and interpretation on abnormal pressure detection in Bengal Basin with a compiled data package on generated curves (Geologs), charts, tables in a systematic way to understand the depth/stratigraphic horizons proved/interpreted as proved or likely to be within transition and overpressure regime. The integrated analysis indicates that the wells drilled in the east of Eocene hinge zone in the onshore and offshore parts of Bengal Basin have penetrated overpressure formation within Miocene in the depth range of 2800 m to 5340 m and the mud weight used to control this overpressure zone was more than 2.0 sp gr mud. The generated Geologs can be used as reference to understand the regime of transition and overpressure, as a valuable document for exploration drilling planning and monitoring. The generated model curve (modified using available data after Hottman and Johnson, 1956 curve) using sonic departure (i.e. Δtob(sh) −Δtn(sh)) from drilled wells may be used as an additional tool to find out the expected formation pressure gradient and equivalent mud weight in all future wells. The correlation of wells based on the trend of dcs and σ logs will be useful for predicting transition and overpressure top provided all the parameters required for calculating dcs and σ log recorded smoothly during drilling phase. The study has brought out the detail procedure to generate the pressure profile in the future wells. The generation of pressure profile of a well prior to drilling has got immense importance in oil industry. The drilling of the well should be done by maintaining the optimum mud weight generated from the pressure profile. In case, during drilling, formation pressure is more than the mud pressure, resulted gas kicks or worse, blowouts of the well. Excessively high mud pressure can fracture the formation and cause lost circulation. The oil and gas companies, worldwide, attributed 15% losses due to various problems associated with drilling complications, mostly related to improper pressure prediction of a well. The losses include loss of material as well as drilling process continuity, called non-productive time (NPT). The generation of accurate pressure profile reduces drilling problems, cuts exploration and development costs and allows billions of dollars now spent on losses to be better spent-building and replacing reserves.  相似文献   
496.
The concept of oscillatory Universe appears to be realistic and buried in the dynamic dark energy equation of state. We explore its evolutionary history under the framework of general relativity. We observe that oscillations do not go unnoticed with such an equation of state and that their effects persist later on in cosmic evolution. The ‘classical’ general relativity seems to retain the past history of oscillatory Universe in the form of increasing scale factor as the classical thermodynamics retains this history in the form of increasing cosmological entropy.  相似文献   
497.
The atmospheric general circulation model EC-EARTH-IFS has been applied to investigate the influence of both a reduced and a removed Arctic sea ice cover on the Arctic energy budget and on the climate of the Northern mid-latitudes. Three 40-year simulations driven by original and modified ERA-40 sea surface temperatures and sea ice concentrations have been performed at T255L62 resolution, corresponding to 79?km horizontal resolution. Simulated changes between sensitivity and reference experiments are most pronounced over the Arctic itself where the reduced or removed sea ice leads to strongly increased upward heat and longwave radiation fluxes and precipitation in winter. In summer, the most pronounced change is the stronger absorption of shortwave radiation which is enhanced by optically thinner clouds. Averaged over the year and over the area north of 70° N, the negative energy imbalance at the top of the atmosphere decreases by about 10?W/m2 in both sensitivity experiments. The energy transport across 70° N is reduced. Changes are not restricted to the Arctic. Less extreme cold events and less precipitation are simulated in sub-Arctic and Northern mid-latitude regions in winter.  相似文献   
498.
The North Puruliya Shear zone (NPSZ) is characterized by occurrence of mafic-ultramafic rocks aligned parallel to the shear zone, intruding the high grade Proterozoic rocks of Chhotanagpur Gneissic Complex. The ultramafic rocks occur as small lenses, pockets, veins, thin dykes and are intimately associated with mafic (gabbro, norite) rocks. Pyroxenites (viz. olivine websterite, websterite, plagioclase websterite) and hornblendite are the two important members of the ultramafic rocks containing clinopyroxene, orthopyroxene, olivine, plagioclase, amphibole, phlogopite and ilmenite. The mafic-ultramafic rocks show evidence of shearing and retrogressive metamorphism. Linear correlation of chemical attributes suggests fractionation-controlled magmatic differentiation. Enrichment of LILE and LREE in the mafic-ultramafic suite suggests an enriched mantle source and pronounced negative Eu-anomalies in all the rock types except hornblendite suggest fractionation of plagioclase under low fO2 condition. Progressive iron enrichment trend in rocks of the mafic-ultramafic suite also indicate magmatic differentiation under low fO2 condition. Early fractionation and accumulation of clinopyroxene and plagioclase from a basaltic magma may have given rise to the ultramafic rocks of the area. Little change in the Nb/Zr and Ce/Zr ratios of ultramafic and mafic rocks (except alkali norite) strongly support low crustal contamination. A few samples of norite and gabbro-norites appeared to be variably contaminated by a crustal component or affected by late granitic intrusion resulting in enrichment of alkali in the former.  相似文献   
499.
The petrological details of the ultramafic-mafic-alkaline complex related to Sylhet Trap occurring near to Mawpyut (25°25′N:92°10′E) of Jaintia hills district Meghalaya, northeastern India, are poorly known. Field investigations indicate that the Mawpyut body occurs as a pluton distinctly intrusive into adjacent low grade metasedimentary Shillong Group of rocks. This body reveals development of two broad lithotypes namely ultramafic (olivine clinopyroxenite, clinopyroxenite and plagioclase bearing ultramafic) and mafic (mostly gabbro, orthopyroxene gabbro, olivine gabbronorite, mela gabbro and mela-gabbro-norite) with minor presence of later syenitic veins. Though, in general, the pluton shows mineralogical variations, the field boundaries among those petrographic types are not discernible. Careful consideration of major and trace element chemistry of the constituent lithomembers clearly suggest progressive insitu fractionation of a common parent magma.  相似文献   
500.
Over the last decade, measurements of the cosmic microwave background (CMB) anisotropy have spearheaded the remarkable transition of cosmology into a precision science. However, addressing the systematic effects in the increasingly sensitive, high-resolution, 'full' sky measurements from different CMB experiments poses a stiff challenge. The analysis techniques must not only be computationally fast to contend with the huge size of the data, but the higher sensitivity also limits the simplifying assumptions which can then be invoked to achieve the desired speed without compromising the final precision goals. While maximum likelihood is desirable, the enormous computational cost makes the suboptimal method of power spectrum estimation using pseudo-C l unavoidable for high-resolution data. The debiasing of the pseudo-C l needs account for non-circular beams, together with non-uniform sky coverage. We provide a (semi)analytic framework to estimate bias in the power spectrum due to the effect of beam non-circularity and non-uniform sky coverage, including incomplete/masked sky maps and scan strategy. The approach is perturbative in the distortion of the beam from non-circularity, allowing for rapid computations when the beam is mildly non-circular. We advocate that it is computationally advantageous to employ 'soft' azimuthally apodized masks whose spherical harmonic transform die down fast with m . We numerically implement our method for non-rotating beams . We present preliminary estimates of the computational cost to evaluate the bias for the upcoming CMB anisotropy probes  ( l max∼ 3000)  , with angular resolution comparable to the Planck surveyor mission. We further show that this implementation and estimate are applicable for rotating beams on equal declination scans, and can possibly be extended to simple approximations to other scan strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号