首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   14篇
  国内免费   1篇
测绘学   5篇
大气科学   4篇
地球物理   23篇
地质学   50篇
海洋学   7篇
天文学   12篇
自然地理   12篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   9篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   8篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   8篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1988年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
61.
Fossil invertebrates from cores collected in Lake Tanganyika provide a record of probable nearshore ecological response to recent watershed deforestation and sediment erosion in several East African watersheds. We compared paleoecological profiles (primarily from ostracodes) from watersheds spanning a range of sizes and present-day deforestation disturbance levels to understand the timing and magnitude of faunal changes, and their relationship in time to terrestrially-derived disturbance indicators. Profiles from the Lubulungu and Nyasanga/Kahama Rivers (Tanzania) provide a record of faunal variability in watersheds that are currently undisturbed with respect to deforestation. These records indicate continuous faunal turnover through time. However, this pattern of turnover is accompanied by relatively high levels of diversity throughout the record, with no wholesale extinction events. Ostracode taphonomic data and other fossil abundance data from the Lubulungu area provide strong evidence in support of at least two episodes of lower lake levels, associated with episodes of Late Holocene aridity. Records from deltas of disturbed watersheds at the Kabesi River (Tanzania) and those of Northern Burundi all show a combination of profound and abrupt faunal turnover, in some cases accompanied by local extinction and establishment of a few dominant taxa. At the Mwamgongo River delta, fed from a very small, disturbed watershed, species turnover was subtler. In disturbed watershed cores showing abrupt faunal changes the transitions mostly occurred in the late 19th to early 20th centuries, predating the major mid-20th century increase in sediment mass accumulation rates, with the latter only correlated with changing fossil abundance and flux. However, the earlier faunal community changes are contemporaneous with both palynological and geochemical changes in the core profiles indicative of changing land-use patterns. This suggests that lacustrine ecosystem response to deforestation was a two-stage process, with an earlier phase of response to changing quality of sediments or dissolved matter being discharged from the watershed, and a subsequent phase responding to increased quantity of sediment.  相似文献   
62.
63.
64.
65.
A series of ring shear and direct shear tests were performed to measure the drained residual strength of three clay soils. For each of the soils, slickensided direct shear specimens were prepared by wire-cutting intact specimens, and polishing the resulting shear plane on a variety of surfaces to align the clay particles in the direction of shear. Drained direct shear tests were then conducted on each of the polished specimens. The resulting shear strengths were compared with the residual strengths measured in the ring shear device to evaluate the effectiveness of the different polishing techniques for creating slickensided surfaces. Test results indicated that the measurement of residual strengths along preformed slickensided surfaces is extremely sensitive to both the soil type and the slickenside preparation technique that is used. Consequently, this approach does not appear to be a viable alternative to conventional repeated direct shear or ring shear tests to measure residual shear strengths.  相似文献   
66.
Melting seasonal ground ice (SGI) in western Boreal Plains (WBP) peatlands can reduce the available energy at the surface by reducing potential evapotranspiration (PET). PET often exceeds annual precipitation in the WBP. Including this effect in hydrological models may be important in assessing water deficits. However, SGI melt and the timing of ice-free conditions vary spatially, which suggests PET spatial variability could be influenced by SGI. Understanding this potential linkage can help improve site scale PET in peatland hydrological models. The objectives of this paper were (a) to quantify the effect of ice thickness and melt rate on peatland PET; (b) quantify the spatial variability of SGI thickness and melt rate across spatial scales; and (c) assess how/if spatial variability in SGI thickness/melt rate affects site scale PET. Results from the sensitivity analysis indicated that SGI thickness had a bigger impact on reducing PET compared with the melt rate. Two SGI thickness values were used that were observed on site: 0.32 m, which was measured in a more treed area, and 0.18 m, which was in a more open area. The 0.32 m had an average PET reduction of 14 mm (±0.7), over the month of May, compared with 9 mm (±1 mm) when there was 0.18 m of SGI, which are 13.7 and 8.8% reductions, respectively. SGI thickness and melt rate, both exhibited large- and small-scale spatial variability. At the large scale, spatial patterns in SGI thickness appeared to be influenced by extensive shading from the adjacent hillslopes. Small scale, SGI thickness may be a function of tree proximity and the snowpack. Finally, net radiation, rather than SGI, appeared to be the main driver behind PET spatial variability. This work enhances our conceptual understanding of the role of SGI in WBP peatlands. Future work can use the findings to better inform peatland hydrological models, allowing for better representation of peatlands in regional-scale models.  相似文献   
67.
Hydraulic fracturing has become an important technique for enhancing the permeability of hydrocarbon source rocks and increasing aquifer transmissivity in many hard rock environments where natural fractures are limited, yet little is known about the nature or behaviour of these hydraulically induced fractures as conduits to flow and transport. We propose that these fractures tend to be smooth based on observed hydraulic and transport behaviour. In this investigation a multi‐faceted approach was used to quantify the properties and characteristics of an isolated hydraulically induced fracture in crystalline rocks. Packers were used to isolate the fracture that is penetrated by two separate observation wells located approximately 33 m apart. A series of aquifer tests and an induced gradient tracer test were performed to better understand the nature of this fracture. Aquifer test results indicate that full recovery is slow because of the overall low permeability of the crystalline rocks. Drawdown tests indicate that the fracture has a transmissivity of 1–2 m2/day and a specific storage on the order of 2–9 × 10?7/m. Analysis of a potassium–bromide tracer test break through curve shows classic Fickian behaviour with minimal tailing analogous to parallel plate flow. Virtually all of the tracer was recovered, and the breakthrough curve dilution indicates that the swept area is only about 11% of a radial flow field and the estimated aperture is ≤0.5 mm, which implies a narrow linear flow region. These outcomes suggest that transport within these hydraulically induced ‘smooth’ fractures in crystalline rocks is rapid with minimal mixing, small local velocity fluctuations and no apparent diffusion into the host rock or secondary fractures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
68.
The combination of tree canopy cover and a free water surface makes the subcanopy environment of flooded forested wetlands unlike other aquatic or terrestrial systems. Subcanopy vapour fluxes and energy budgets represent key controls on water level and understorey climate but are not well understood. In a permanently flooded forest in south‐eastern Louisiana, USA, an energy balance approach was used to address (a) whether evaporation from floodwater under a forest canopy is solely energy limited and (b) how energy availability was modulated by radiation and changes in floodwater heat storage. A 5‐month continuous measurement period (June–November) was used to sample across seasonal changes in canopy activity and temperature regimes. Over this period, the subcanopy airspace was humid, maintaining saturation vapour pressure for 28% of the total record. High humidity coupled with the thermal inertia of surface water altered both seasonal and diel energy exchanges, including atypical phenomena such as frequent day‐time vapour pressure gradients towards the water surface. Throughout the study period, nearly all available energy was partitioned to evaporation, with minimal sensible heat exchange. Monthly mean evaporation ranged from 0.7 to 1.7 mm/day, peaking in fall when canopy senescence allowed greater radiation transmission; contemporaneous seasonal temperature shifts and a net release of stored heat from the surface water resulted in energy availability exceeding net radiation by 30% in October and November. Relatively stable energy partitioning matches Priestley–Taylor assumptions for a general model of evaporation in this ecosystem.  相似文献   
69.
The formation sequence of prominent ridges and other tectonic lineaments on the southern portion of the leading hemisphere of Europa is determined from cross-cutting relationships. These selected features formed fairly recently relative to most of the surface; older lineaments no longer retain clear evidence of cross-cutting. If we assume that this sequence represents the order of formation of cracks that underlie each lineament, and that the orientation of each crack was determined by tidal stress whose azimuth varies monotonically counter-clockwise with time, the azimuth must have rotated more than 740°, which would correspond to the change in tidal stress over two periods of nonsynchronous rotation (relative to the direction of Jupiter). However, that interpretation is not necessarily compelling, because the observed orientations of cross-cutting lineaments are not densely spaced over these cycles; in fact, the sequence would fit nearly as well into an arbitrary model with rotation in the opposite sense from that predicted by theory. This tectonic record may have formed over many more rotational cycles, such that typically only a few cracks form per cycle, which would be consistent with evidence from considerations of cycloidal crack patterns. Sets of cracks that cluster near certain azimuth orientations appear to be parts of globe-encircling lineament systems and may result from other effects, perhaps polar wander that occurred rapidly relative to nonsynchronous rotation.  相似文献   
70.
Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum’s open water method. Water column rates were calculated from oxygen-based bottle experiments. The study was conducted over a spring-summer season in the Pensacola Bay estuary at a shallow seagrass-dominated site and a deeper bare-bottomed site. Water column integrated gross production rates more than doubled (58.7 to 130.9 mmol O2 m?2 day?1) from spring to summer, coinciding with a sharp increase in water column chlorophyll-a, and a decrease in surface salinity. As expected, ecosystem gross production rates were consistently higher than water column rates but showed a different spring-summer pattern, decreasing at the shoal site from 197 to 168 mmol O2 m?2 day?1 and sharply increasing at the channel site from 93.4 to 197.4 mmol O2 m?2 day?1. The consistency among approaches was evaluated by calculating residual metabolism rates (ecosystem ? water column). At the shoal site, residual gross production rates decreased from spring to summer from 176.8 to 99.1 mmol O2 m?2 day?1 but were generally consistent with expectations for seagrass environments, indicating that the open water method captured both water column and benthic processes. However, at the channel site, where benthic production was strongly light-limited, residual gross production varied from 15.7 mmol O2 m?2 day?1 in spring to 86.7 mmol O2 m?2 day?1 in summer. The summer rates were much higher than could be realistically attributed to benthic processes and likely reflected a violation of the open water method due to water column stratification. While the use of sensors for estimating complex ecosystem processes holds promise for coastal monitoring programs, careful attention to the sampling design, and to the underlying assumptions of the methods, is critical for correctly interpreting the results. This study demonstrated how using a combination of approaches yielded a fuller understanding of the ecosystem response to hydrologic and seasonal variability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号