首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   2篇
  国内免费   2篇
测绘学   1篇
大气科学   4篇
地球物理   21篇
地质学   50篇
海洋学   25篇
天文学   9篇
综合类   1篇
自然地理   36篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   4篇
  2011年   9篇
  2010年   1篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   4篇
  2005年   9篇
  2004年   10篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有147条查询结果,搜索用时 39 毫秒
141.
Geochemical quantification of semiarid mountain recharge   总被引:2,自引:0,他引:2  
Analysis of a typical semiarid mountain system recharge (MSR) setting demonstrates that geochemical tracers help resolve the location, rate, and seasonality of recharge as well as ground water flowpaths and residence times. MSR is defined as the recharge at the mountain front that dominates many semiarid basins plus the often-overlooked recharge through the mountain block that may be a significant ground water resource; thus, geochemical measurements that integrate signals from all flowpaths are advantageous. Ground water fluxes determined from carbon-14 ((14)C) age gradients imply MSR rates between 2 x 10(6) and 9 x 10(6) m(3)/year in the Upper San Pedro Basin, Arizona, USA. This estimated range is within an order of magnitude of, but lower than, prior independent estimates. Stable isotopic signatures indicate that MSR has a 65% +/- 25% contribution from winter precipitation and a 35% +/- 25% contribution from summer precipitation. Chloride and stable isotope results confirm that transpiration is the dominant component of evapotranspiration (ET) in the basin with typical loss of more than 90% of precipitation-less runoff to ET. Such geochemical constraints can be used to further refine hydrogeologic models in similar high-elevation relief basins and can provide practical first estimates of MSR rates for basins lacking extensive prior hydrogeologic measurements.  相似文献   
142.
Most primary production of angiosperms in coastal salt marshes enters the detritivore food web; studies of this link have predominantly focused on one plant species (Spartina alterniflora) and one detritivore species (Littoraria irrorata). In mesocosm experiments, we studied the rates and pattern of decomposition of litter derived from four plant species common in southeastern United States coastal salt marshes and marsh-fringing terrestrial habitats. Crustanceans and gastropods were selected as detritivores feeding on, and affecting degradation of, the litter of two monocotyledons and two dicotyledons. Despite interspecific similarities in consumption, detritivores exhibited species-specific effects on litter chemistry and on the activity of litter-colonizing microbiota. The chemical composition of feces depended upon both the litter type and the detritivores’ species-specific digestive capabilities. Growth rates and survival of detritivores differed among litter species. Different salt marsh detritivores are likely to have different effects on decomposition processes in the salt marsh and cannot be regarded as functionally redundant nor can the litter of different plant species be regard ed as redundant as food for marsh detritivores.  相似文献   
143.
Numerical experiments reproduce the fundamental architecture of magma-poor rifted margins such as the Iberian or Alpine margins if the lithosphere has a weak mid-crustal channel on top of strong lower crust and a horizontal thermal weakness in the rift center. During model extension, the upper crust undergoes distributed collapse into the rift center where the thermally weakened portion of the model tears. Among the features reproduced by the modeling, we observe: (1) an array of tilted upper-crustal blocks resting directly on exhumed mantle at the distal margin, (2) consistently oceanward-dipping normal faults, (3) a mid-crustal high strain zone at the base of the crustal blocks (S-reflector), (4) new ocean floor up against a low angle normal fault at the tip of the continent, (5) shear zones consistent with continentward-dipping reflectors in the mantle lithosphere, (6) the mismatch frequently observed between stretching values inferred from surface extension and bulk crustal thinning at distal margins (upper plate paradox). Rifting in the experiment is symmetric at a lithospheric scale and the above features develop on both sides of the rift center. We discuss three controversial points in more detail: (1) weak versus strong lower crust, (2) the deformation pattern in the mantle, and (3) the significance of detachment faults during continental breakup. We argue that the transition from wide rifting towards narrow rifting with a pronounced polarity towards the rift center is associated with the advective growth of a thermal perturbation in the mantle lithosphere.  相似文献   
144.
Lake Lochloosa, Florida (USA) recently underwent a shift from macrophyte to phytoplankton dominance, offering us the opportunity to use a whole-basin, mass-balance approach to investigate the influence of phosphorus loading on ecosystem change in a shallow, sub-tropical lake. We analyzed total phosphorus (TP) sedimentation in the basin to improve our understanding of the forcing factor responsible for the recent shift to phytoplankton dominance. We measured 210Pb activity, organic matter (OM), organic carbon (OC) and TP in short sediment cores from 20 locations to develop a comprehensive, whole-basin estimate of recent mass sedimentation rates (MSR) for bulk sediment, OM, OC and TP. The whole-basin sedimentation models provided insights into historic lake processes that were not evident from the limited, historic water quality data. We used Akaike’s Information Criteria to differentiate statistically between constant MSR and exponentially increasing MSR. An eightfold, exponential increase in TP accumulation over the past century provided evidence for the critical role of increased P loading as a forcing factor in the recent shift to phytoplankton dominance. Model results show increased TP retention and decreased TP residence time were in-lake responses to increased TP loading and the shift from macrophyte to phytoplankton dominance in Lake Lochloosa. Comparison of TP loading with TP retention and historic, diatom-inferred limnetic TP concentrations identified the TP loading threshold that was exceeded to trigger the shift to phytoplankton dominance.  相似文献   
145.
Natural resource planning at all scales demands methods for assessing the impacts of resource development and use, and in particular it requires standardized methods that yield robust and unbiased results. Building from existing probabilistic methods for assessing the volumes of energy and mineral resources, we provide an algorithm for consistent, reproducible, quantitative assessment of resource development impacts. The approach combines probabilistic input data with Monte Carlo statistical methods to determine probabilistic outputs that convey the uncertainties inherent in the data. For example, one can utilize our algorithm to combine data from a natural gas resource assessment with maps of sage grouse leks and piñon-juniper woodlands in the same area to estimate possible future habitat impacts due to possible future gas development. As another example: one could combine geochemical data and maps of lynx habitat with data from a mineral deposit assessment in the same area to determine possible future mining impacts on water resources and lynx habitat. The approach can be applied to a broad range of positive and negative resource development impacts, such as water quantity or quality, economic benefits, or air quality, limited only by the availability of necessary input data and quantified relationships among geologic resources, development alternatives, and impacts. The framework enables quantitative evaluation of the trade-offs inherent in resource management decision-making, including cumulative impacts, to address societal concerns and policy aspects of resource development.  相似文献   
146.
147.
Seasonal wind-driven upwelling along the U.S. West Coast supplies large concentrations of nitrogen to surface waters that drives high primary production. However, the influence of coastal upwelled nutrients on phytoplankton productivity in adjacent small estuaries and bays is poorly understood. This study was conducted in Drakes Estero, California, a low inflow estuary located in the Point Reyes National Seashore and the site of an oyster mariculture facility that produces 40 % of the oysters harvested in California. Measurements of nutrients, chlorophyll a, phytoplankton functional groups, and phytoplankton carbon and nitrogen uptake were made between May 2010 and June 2011. A sea-to-land gradient in nutrient concentrations was observed with elevated nitrate at the coast and higher ammonium at the landward region. Larger phytoplankton cells (>5 μm diameter) were dominant within the outer and middle Estero where phytoplankton primary productivity was fueled by nitrate and f-ratios were >0.5; the greatest primary production rates were in the middle Estero. Primary production was lowest within the inner Estero, where smaller phytoplankton cells (<5 μm) were dominant, and nitrogen uptake was dominated by ammonium. Phytoplankton blooms occurred at the outer and middle Estero and were dominated by diatoms during the spring and dry-upwelling seasons but dinoflagellates during the fall. Small flagellated algae (>2 μm) were dominant at the inner Estero where no blooms occurred. These results indicate that coastal nitrate and phytoplankton are imported into Drakes Estero and lead to periods of high new production that can support the oyster mariculture; a likely scenario also for other small estuaries and bays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号