首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133165篇
  免费   2368篇
  国内免费   2164篇
测绘学   4018篇
大气科学   9950篇
地球物理   26809篇
地质学   49380篇
海洋学   10668篇
天文学   26247篇
综合类   2454篇
自然地理   8171篇
  2021年   920篇
  2020年   1101篇
  2019年   1148篇
  2018年   6800篇
  2017年   5990篇
  2016年   5414篇
  2015年   2177篇
  2014年   3119篇
  2013年   5877篇
  2012年   4163篇
  2011年   6895篇
  2010年   5607篇
  2009年   7227篇
  2008年   6359篇
  2007年   6610篇
  2006年   4321篇
  2005年   3793篇
  2004年   3864篇
  2003年   3682篇
  2002年   3274篇
  2001年   2830篇
  2000年   2754篇
  1999年   2287篇
  1998年   2356篇
  1997年   2255篇
  1996年   1881篇
  1995年   1813篇
  1994年   1581篇
  1993年   1481篇
  1992年   1410篇
  1991年   1319篇
  1990年   1396篇
  1989年   1212篇
  1988年   1116篇
  1987年   1352篇
  1986年   1170篇
  1985年   1484篇
  1984年   1656篇
  1983年   1552篇
  1982年   1469篇
  1981年   1328篇
  1980年   1255篇
  1979年   1139篇
  1978年   1192篇
  1977年   1054篇
  1976年   1018篇
  1975年   987篇
  1974年   953篇
  1973年   944篇
  1972年   611篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Geochemical analysis of bitumen- and hydrocarbon-bearing fluid inclusions from the Devonian-Carboniferous Clair field indicates that the reservoirs contain a mixture of oils from different marine and lacustrine sources. Reconstruction of the Clair field oil-charge history using fluid inclusion petrography show that oil-charging occurred at times of K-feldspar, quartz and calcite cementation. Temperature–composition–time data yielded from the integration of fluid inclusion microthermometry with high-resolution Ar–Ar dating, date hydrocarbon-bearing K-feldspar overgrowths at 247 ± 3.3 Ma. These data show that in order for oil to be trapped within primary fluid inclusions in K-feldspar overgrowths, hydrocarbon migration throughout the UK Atlantic margin must have been taking place during the Late Palaeozoic and as such, current industry oil-play models based solely on oil charging from Jurassic-Cretaceous marine sources are clearly incomplete and need revision. Apatite fission track analysis and vitrinite reflectance data were used to reconstruct thermal burial histories and assess potential oil generation from Middle Devonian lacustrine source rocks. Thermal history data from wells along The Rona Ridge adjacent to the Clair field show that the Palaeozoic section was heated to greater than 100 °C at some time between 270 and 230 Ma, confirming that Devonian source rocks were mature and expelling oil during the Late Palaeozoic at the time that authigenic K-feldspar overgrowths were growing in the Clair field.  相似文献   
972.
Petrological and geochemical data obtained on the Quaternary lavas of volcanoes at Spitsbergen Island indicate that the rocks were produced via the deep-seated crystallization of parental alkaline magmas at 8–10 kbar. The character of clinopyroxene enrichment in incompatible elements indicates that the mineral crystallized from more enriched melts than those inferred from the composition of the host lavas. These melts were close to the parental melts previously found as veinlets in mantle hyperbasite xenoliths in the lavas. According to the character of their enrichment in Pb and Sr radiogenic isotopes and depletion in Nd, the basalts from Spitsbergen Island define a single trend with the weakly enriched tholeiites of the Knipovich Ridge, a fact suggesting the closeness of the enriched sources beneath the continental margin of Spitsbergen and beneath the spreading zone. Magmatic activity at Spitsbergen was related to the evolution of the Norwegian-Greenland basin, which evolved in pulses according to the shift of the spreading axes. The most significant of the latter events took place in the Neogene, when the Knipovich Ridge obtained its modern position near the western boundary of Spitsbergen. Early in the course of the evolution, the emplacement of alkaline melts generated at Spitsbergen into the oceanic mantle could form the enriched mantle, which was later involved in the melting process beneath the spreading zone.  相似文献   
973.
The low-temperature heat capacity (C p) of Si-wadeite (K2Si4O9) synthesized with a piston cylinder device was measured over the range of 5–303 K using the heat capacity option of a physical properties measurement system. The entropy of Si-wadeite at standard temperature and pressure calculated from the measured heat capacity data is 253.8 ± 0.6 J mol−1 K−1, which is considerably larger than some of the previous estimated values. The calculated phase transition boundaries in the system K2O–Al2O3–SiO2 are generally consistent with previous experimental results. Together with our calculated phase boundaries, seven multi-anvil experiments at 1,400 K and 6.0–7.7 GPa suggest that no equilibrium stability field of kalsilite + coesite intervenes between the stability field of sanidine and that of coesite + kyanite + Si-wadeite, in contrast to previous predictions. First-order approximations were undertaken to calculate the phase diagram in the system K2Si4O9 at lower pressure and temperature. Large discrepancies were shown between the calculated diagram compared with previously published versions, suggesting that further experimental or/and calorimetric work is needed to better constrain the low-pressure phase relations of the K2Si4O9 polymorphs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
974.
The Vredefort dome in the Kaapvaal Craton was formed as a result of the impact of a large meteorite at 2.02 Ga. The central core of Archaean granitic basement rocks is surrounded by a collar of uplifted and overturned strata of the Witwatersrand Supergroup, exposing a substantial depth section of the Archaean crust. Orthogneisses of the core show little variation in whole-rock δ 18O value, with the majority being between 8 and 10‰, with a mean of 9.2‰ (n = 35). Quartz and feldspar have per mil differences that are consistent with O-isotope equilibrium at high temperatures, suggesting minimal interaction with fluids during subsequent cooling. These data refute previous suggestions that the Outer Granite Gneiss (OGG) and Inlandsee Leucogranofels (ILG) of the core represent middle and lower crust, respectively. Granulite-facies greenstone remnants from the ILG have δ 18O values that are on average 1.5‰ higher than the ILG host rocks and are unlikely, therefore, to represent the residuum from the partial melting event that formed the host rock. Witwatersrand Supergroup sedimentary rocks of the collar, which were metamorphosed at greenschist-to amphibolite-facies conditions, generally have lower δ 18O values than the core rocks with a mean value for metapelites of 7.7‰ (n = 45). Overall, through an ∼20 km thick section of crust, there is a general increase in whole-rock δ 18O value with increasing depth. This is the reverse of what is normal in the crust, largely because the collar rocks have δ 18O values that are unusually low in comparison with metamorphosed sedimentary rocks worldwide. The collar rocks have δD values ranging from −35 to −115‰ (average −62‰, n = 29), which are consistent with interaction with water of meteoric origin, having a δD of about −25 to −45‰. We suggest that fluid movement through the collar rocks was enhanced by impact-induced secondary permeability in the dome structure. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
975.
Lithium concentrations and isotopic compositions of olivine and 87Sr/86Sr and 143Nd/144Nd of coexisting clinopyroxene from peridotite xenoliths from the Quaternary Labait volcano, Tanzania, document the influence of rift-related metasomatism on the ancient cratonic mantle. Olivines show negative correlations between Fo content and both δ7Li and Li concentrations. Olivines in iron-rich peridotites (Fo85–87) have high Li concentrations (3.2–4.8 ppm) and heavy δ7Li (+5.2 to +6.6). In contrast, olivines in ancient, refractory peridotites have lower Li concentrations (∼2 ppm) and relatively light δ7Li (+2.6 to +3.5). This reflects mixing between ancient, refractory cratonic lithosphere and asthenosphere-derived rift magmas. A uniquely fertile, deformed, high-temperature garnet lherzolite, interpreted to be from the base of the lithosphere, has a 87Sr/86Sr of 0.7029 and 143Nd/144Nd of 0.51286, similar to HIMU oceanic basalts. It provides the best estimate of the Sr–Nd isotope composition of the upwelling mantle (i.e., plume, sensu lato) underlying this portion of the East African Rift, and is slightly less radiogenic compared to previous estimates of the plume that were based on rift basalts. Although elevated δ7Li are not exclusive to HIMU source regions, the data collectively indicate that the plume beneath Labait has HIMU characteristics in Sr, Nd and Li isotope composition. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
976.
The Hong’an area (western Dabie Mountains) is the westernmost terrane in the Qinling-Dabie-Sulu orogen that preserves UHP eclogites. The ages of the UHP metamorphism have not been well constrained, and thus hinder our understanding of the tectonic evolution of this area. LA-ICPMS U–Pb age, trace element and Hf isotope compositions of zircons of a granitic gneiss and an eclogite from the Xinxian UHP unit in the Hong’an area were analyzed to constrain the age of the UHP metamorphism. Most zircons are unzoned or show sector zoning. They have low trace element concentrations, without significant negative Eu anomalies. These metamorphic zircons can be further subdivided into two groups according to their U–Pb ages, and trace element and Lu–Hf isotope compositions. One group with an average age of 239 ± 2 Ma show relatively high and variable HREE contents (527 ≥ LuN ≥ 14) and 176Lu/177Hf ratios (0.00008–0.000931), indicating their growth prior to a great deal of garnet growth in the late stage of continental subduction. The other group yields an average age of 227 ± 2 Ma, and shows consistent low HREE contents and 176Lu/177Hf ratios, suggesting their growth with concurrent garnet crystallization and/or recrystallization. These two groups of age are taken as recording the time of prograde HP to UHP and retrograde UHP–HP stages, respectively. A few cores have high Th/U ratios, high trace element contents, and a clear negative Eu anomaly. These features support a magmatic origin of these zircon cores. The upper intercept ages of 771 ± 86 and 752 ± 70 Ma for the granitic gneiss and eclogite, respectively, indicate that their protoliths probably formed as a bimodal suite in rifting zones in the northern margin of the Yangtze Block. Young Hf model ages (T DM1) of magmatic cores indicate juvenile (mantle-derived) materials were involved in their protolith formation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
977.
The spatial distribution of grains in a solidifying igneous rock controls the physical properties of the crystal mush, and in turn is controlled by the rate of crystal growth and accumulation. A predominant non-spherical habit for igneous minerals brings into question the use of spherical particles in reference packings used for quantification of spatial distribution. Furthermore, variations of crystal clustering/ordering with length scale require spatial statistics which take into account the distribution of particles beyond nearest neighbours. Using random close packings of spherocylinders, we demonstrate the importance of aspect ratio for the aggregation index (usually known as R) and show that packings of spherical particles have more structure than packings of rods. The spatial distribution functions demonstrate that the plagioclase grains in the colonnade from the Holyoke basalt are clustered on a length scale of 0.5 mm. Understanding the controls on grain spatial distribution in igneous rocks will depend on the application of these techniques to well-understood environments.  相似文献   
978.
Olivine crystals were grown in the presence of a hydrous silicate fluid during multi-anvil experiments at 8 GPa and 1,000–1,600°C. Experiments were conducted both in a simple system (FeO–MgO–SiO2–H2O) and in a more complex system containing additional elements (CaO–Na2O–Al2O3–Cr2O3–TiO2–FeO–MgO–SiO2–H2O). Silica activity was buffered by the presence of either pyroxene (high a SiO2) or ferropericlase (low a SiO2), and was buffered by the presence of Ni + NiO or Fe + FeO, or constrained by the presence of Fe2O3. Raman spectroscopy was used to identify pyroxene polymorphs in the run products. Clinoenstatite was present in the 1,000°C experiment, and enstatite in experiments at 1,400–1,520°C. The H2O content of olivine was measured using secondary ion mass spectroscopy, and infrared spectroscopy was used to investigate the nature of hydrous defects. The H2O storage capacity of olivine decreases with increasing temperature at 8 GPa. In contrast to previous experimental results at ≤2 GPa, no significant effect of varying oxygen fugacity is evident, but H2O storage capacity is enhanced under conditions of low silica activity. No significant growth of low wavenumber (<3,400 cm−1) peaks, generally associated with high at low pressure, was observed in the FTIR spectra of olivine from the high experiments. Our experiments show that previous high pressure H2O storage capacity measurements for olivine synthesized under more oxidizing conditions than the Earth’s mantle are not likely to be compromised by the of the experiments. However, the considerable effect of temperature on H2O storage capacity in olivine must be taken into account to avoid overestimation of the bulk upper mantle H2O storage capacity.  相似文献   
979.
Tourmaline is widespread in metapelites and pegmatites from the Neoproterozoic Damara Belt, which form the basement and potential source rocks of the Cretaceous Erongo granite. This study traces the B-isotope variations in tourmalines from the basement, from the Erongo granite and from its hydrothermal stage. Tourmalines from the basement are alkali-deficient schorl-dravites, with B-isotope ratios typical for continental crust (δ11B average −8.4‰ ± 1.4, n = 11; one sample at −13‰, n = 2). Virtually all tourmaline in the Erongo granite occurs in distinctive tourmaline-quartz orbicules. This “main-stage” tourmaline is alkali-deficient schorl (20–30% X-site vacancy, Fe/(Fe + Mg) 0.8–1), with uniform B-isotope compositions (δ11B −8.7‰ ± 1.5, n = 49) that are indistinguishable from the basement average, suggesting that boron was derived from anatexis of the local basement rocks with no significant shift in isotopic composition. Secondary, hydrothermal tourmaline in the granite has a bimodal B-isotope distribution with one peak at about −9‰, like the main-stage tourmaline, and a second at −2‰. We propose that the tourmaline-rich orbicules formed late in the crystallization history from an immiscible Na–B–Fe-rich hydrous melt. The massive precipitation of orbicular tourmaline nearly exhausted the melt in boron and the shift of δ11B to −2‰ in secondary tourmaline can be explained by Rayleigh fractionation after about 90% B-depletion in the residual fluid. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
980.
The ages of subcontinental lithospheric mantle beneath the North China and South China cratons are less well-constrained than the overlying crust. We report Re–Os isotope systematics of mantle xenoliths entrained in Paleozoic kimberlites and Mesozoic basalts from eastern China. Peridotite xenoliths from the Fuxian and Mengyin Paleozoic diamondiferous kimberlites in the North China Craton give Archean Re depletion ages of 2.6–3.2 Ga and melt depletion ages of 2.9–3.4 Ga. No obvious differences in Re and Os abundances, Os isotopic ratios and model ages are observed between spinel-facies and garnet-facies peridotites from both kimberlite localities. The Re–Os isotopic data, together with the PGE concentrations, demonstrate that beneath the Archean continental crust of the eastern North China Craton, Archean lithospheric mantle of spinel- to diamond-facies existed without apparent compositional stratification during the Paleozoic. The Mesozoic and Cenozoic basalt-borne peridotite and pyroxenite xenoliths, on the other hand, show geochemical features indicating metasomatic enrichment, along with a large range of the Re–Os isotopic model ages from Proterozoic to Phanerozoic. These features indicate that lithospheric transformation or refertilization through melt-peridotite interaction could be the primary mechanism for compositional changes during the Phanerozoic, rather than delamination or thermal-mechanical erosion, despite the potential of these latter processes to play an important role for the loss of garnet-facies mantle. A fresh garnet lherzolite xenolith from the Yangtze Block has a Re depletion age of ∼1.04 Ga, much younger than overlying Archean crustal rocks but the same Re depletion ages as spinel lherzolite xenoliths from adjacent Mesozoic basalts, indicating Neoproterozoic resetting of the Re–Os system in the South China Craton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号