首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   5篇
测绘学   1篇
大气科学   11篇
地球物理   4篇
地质学   53篇
海洋学   4篇
天文学   2篇
自然地理   15篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有90条查询结果,搜索用时 140 毫秒
81.
The recognition of materials and structures which are unrelated to the original floodplain processes of terrace formation is essential to the proper understanding of terrace morphology and stratigraphy. Two groups of processes have been active in modifying the Lower and Middle Pleistocene terraces of the River Thames since their formation: non-fluvial deposition; and structural rearrangement by subsidence associated with solution of the underlying Chalk. Non-fluvial deposits comprise solifluction gravels which are variable in character and may incorporate a range of pre-existing deposits; and brickearths which appear in most cases to be redistributed loess mixed with non-loessic components. The distinction between fluvial and non-fluvial deposits is made using particle size, composition and fabric analysis. Structural rearrangement of terrace sediments has occurred due to subsidence into deep, narrow, steep-sided pipes. Within such pipes, disturbance of primary structures and fabrics is severe. Over a wider area. primary bedding may be inclined towards pipes, and sediments may show evidence of shearing, faulting and brecciation. Interpretative problems arising from post-depositional modification are exemplified.  相似文献   
82.
Sections through Lower Jurassic epicontinental carbonates from Southern Britain (Junction Bed and equivalent) show a positive carbon-isotope excursion (δ13Ccarbonate), detectable in bulk rock, in the falciferum Zone of the lower Toarcian. Isotopic data from organic matter in more clay-rich sections from Wales and north-east England, together with determinations on belemnite calcite, indicate that highest δ13C values are localized in the upper exaratum Subzone of the falciferum Zone. Levels of particular enrichment in organic carbon were developed in the early to mid-exaratum Subzone and hence pre-date this δ13C maximum. These phenomena reflect the impact of the early Toarcian oceanic anoxic event in the British area. Similar isotopic trends have been recorded in other Toarcian sections from Tethyan Europe and are interpreted as reflecting the chemistry of sea water. On the assumption of isotopic correlation between the English and Tethyan sections, the δ13C maximum would be everywhere dated as latest exaratum Subzone in terms of the north European ammonite scheme. Absolute oxygen-isotope values in carbonates probably reflect both early diagenetic cementation and later temperature-related burial diagenesis, although a palaeotemperature maximum is tentatively identified as characterizing the early falciferum Zone. Subsequent climatic deterioration may have been triggered by drawdown of CO2, related to regional excess carbon burial during the oceanic anoxic event. Using the positive δ13C excursion as a correlative level in sections from different faunal provinces (Britain, Italy and Spain) implies that lower Toarcian zonal stratigraphy is diachronous between northern and southern Europe. There is evidence for partitioning of water masses between the north European shelf and the Tethyan continental margin during the Early Jurassic.  相似文献   
83.
The Late Permian Bainmedart Coal Measures form part of the Permo-Triassic Amery Group, which crops out in the Beaver Lake area of the Northern Prince Charles Mountains, MacRobertson Land, Antarctica. The exposed strata are believed to have formed in graben or half-graben sub-basins on the western edge of the Lambert Graben, a major failed rift system. Sedimentological analysis has revealed that these rocks formed in alluvial environments in which swiftly flowing rivers of low sinuosity (represented by Facies A1 and A2) flowed northward down the axis of the basin, and were associated with waterlogged floodbasin and peat-forming wetlands (Facies B1-B4). A third Facies Association (comprising Facies C1-C3), interpreted as the deposits of lake floor and delta environments, is exclusively developed within a distinctive, fine-grained interval here named the Dragon's Teeth Member. The proportion of Association B facies within the succession increases markedly above the level of the Dragon's Teeth Member (at about 300 m above the base of the formation). Flat, low-angle and undulatory bedding structures preserved within channel deposits are suggestive of sediment deposition in flow conditions which were often critical or supercritical. Presence of massive and chaotic intervals of sandstone further implies some deposition from high-concentration aqueous flows. Alluvial channel bodies show evidence of incision into underlying substrates, both during initiation and at later stages in channel belt construction. The lack of interfingering between channel deposits and coals suggests that thick peats formed only in areas and at times of minimal clastic sediment supply. Analysis of well-developed cyclicity within the coal measures suggests that the dominant control on sequence architecture was climatic, related to precessional Milankovitch fluctuations of c. 19-kyr periodicity. Cycles began abruptly with the deposition of coarse-grained material in high-energy alluvial channels, which contracted with time in response to changes in water supply (rainfall). Upper parts of cycles are dominated by finer-grained sediments and then coal, indicative of progressively reduced coarse sediment input. Tectonic processes overprinted this pattern at least once during the period of sediment accumulation, to form the Dragon's Teeth Member.  相似文献   
84.
Abstract— Understanding the origin of carbonate minerals in the Martian meteorite Allan Hills (ALH) 84001 is crucial to evaluating the hypothesis that they contain traces of ancient Martian life. Using arguments based on chemical equilibria among carbonates and fluids, an origin at >650 °C (inimical to life) has been proposed. However, the bulk and stable isotopic compositions of the carbonate minerals are open to multiple interpretations and so lend no particular support to a high-temperature origin. Other methods (possibly less direct) will have to be used to determine the formation temperature of the carbonates in ALH 84001.  相似文献   
85.
86.
87.
A 525-m-long drill core (DDH-221) through the Partridge Riverintrusion has been divided into four zones on the basis of changesin mineral abundances, compositions and grain size. The igneousrocks in the core consist of cumulate gabbro, troctolite andolivine gabbronorite, in which the original cumulate frameworkof plagioclase and olivine contained varying amounts of trappedintercumulus (pore) liquid. The compositions of the unzoned olivine (Fo31–71) havebeen modified by reaction with Fe-rich in situ intercumulusliquid, but the plagioclase cores (An59–73) have not.The compositions of postcumulus Ca-rich pyroxene, restrictedto En36–44, and the more variable Ca-poor pyroxene (En45–74),follow a downward Fe-enrichment trend similar to the Fe-enrichmentin the olivine. The cumulus olivine expected to be in equilibriumwith plausible parental magmas to these rocks was not preservedin the drill core, nor is the chilled margin to the intrusionsufficiently primitive to account for all the olivine. Revisedmass balance estimates of the primary magmatic compositionsof olivine are Fo67–85. The new limiting value for theprimary olivine is similar to the Fo83–85 olivine expectedto crystallize from the chilled margin to the nearby PigeonPoint olivine diabase sill under equilibrium conditions. Thechanges in the mineral compositions in core DDH-221 do not adequatelydescribe the behavior of parental melts on an equilibrium coolingpath, implying that the cumulus plagioclase and olivine crystallizedelsewhere, and were mixed with varying amounts of intercumulusliquid before introduction to the present crustal site of thePartridge River intrusion. Rock density increases with depth from 2?76 to 3?21, with amean of 2?98 g/cm3. Estimated trapped liquid densities rangefrom 2?56 to 2?92 g/cm3 at high temperatures. This is interpretedto mean that the intercumulus liquid could not have been expelledupward by compaction of the cumulate pile. The dense intercumulusliquid increased downward in abundance to form a series of rocksthat range continuously from variously packed framework cumulatesto chilled non-cumulate rocks in the basal zone. In situ crystallizationis concluded to be the dominant mode of solidification of thePartridge River intrusion, in which infiltration metasomatismis precluded by the high liquid density.  相似文献   
88.
ABSTRACT Stokes surfaces in aeolian deposits are caused by wind scour of unconsolidated material to a roughly planar horizon controlled by near-surface water-tables (Stokes, 1968). A water-table forms a downward limit of scour through the cohesion of damp or wet sand near water-table, and through early cementation by evaporites precipitated in the sediments as water evaporates near the sand-air interface. Study of modern analogues reveals that Stokes surfaces exist in a variety of depositional settings, including a coastal offshore prograding sand sea (Jafurah, Saudi Arabia); a coastal onshore prograding sand sea (Guerrero Negro, Mexico) and a continental sand sea (White Sands, New Mexico, USA). These modern analogues indicate that our concept of Stokes surfaces must be broadened to include the following: (i) modern analogues for Stokes surfaces described here cover areas on the order of 25 km2. These may be as representative of similar surfaces in ancient rocks as hypothesized plains of deflation requiring removal of entire sand seas; (ii) Stokes surfaces occupy a continuum in scale from local to extensive, and erosional surfaces of different magnitude may be stacked closely in the sediments; (iii) Stokes surfaces, although erosional in nature, are commonly associated with deposits both above and below the Stokes bounding surface which plainly reveal the influence of a near-surface groundwater control on wind sedimentation. Moreover, the erosional relief of the bounding surface itself (as well as other features) reveals the influence of a groundwater-table; (iv) Stokes surfaces may be diachronous, representing the lateral shift of a zone of scour within a sand sea rather than simultaneous removal of all dunes from the area encompassed by the erosional surface; (v) Stokes surfaces and associated deposits are often laterally transitional to surfaces and deposits of adjacent depositional environments, including interdunes, tidal flats, lagoons, beaches, lakes and non-aeolian sabkhas. Finally, modern examples from different depositional settings suggest that while most Stokes surfaces have many features in common (such as erosional ridges due to early cementation), there are some features which may, with further study, be revealed to be distinctive of an individual depositional setting.  相似文献   
89.
90.
Due to a lack of modern analogues, debate surrounds the importance of tides in ancient epi-continental seas. However, numerical modelling can provide a quantitative means of investigating palaeo-tidality without recourse to analogues. Finite element modelling of the European Upper Carboniferous epi-continental seaway predicts an exceedingly low Lunar tidal range (ca 5 cm in the open water regions of the UK and Southern North Sea). The Imperial College Ocean Model (ICOM) uses finite element methods and an unstructured tetrahedral mesh that is computationally very efficient. The accuracy and sensitivity of ICOM tidal range predictions were tested using bathymetric data from the present-day Mediterranean Sea. The Mediterranean Sea is micro-tidal and varies in depth up to 5·4 km with an average depth of 1–2 km. ICOM accurately predicts the tidal range given both a realistic, but smoothed, bathymetry and a straight sided basin with a uniform depth of 1 km. Variation in uniform depth from 100 to 3000 m with and without islands consistently predicts micro-tidality, demonstrating that the model is robust and the effect of bathymetric uncertainty on model output is relatively small. The extremely low tidal range predicted for the European Upper Carboniferous is thus deemed robust. Putative Upper Carboniferous tidal deposits have been described in the UK and southern North Sea, but are represented by cyclic rhythmites and are limited to palaeo-estuaries. Calculations based on an embayed coast model show that the tidal range could have been amplified to ca 1 m in estuaries and that this is sufficient to form cyclic rhythmites. Without tidal mixing, the tropical equatorial heat and salinity enhancement would promote stratification in the open water body. The introduction of organic matter probably caused anoxia, biotic mortality and carbon accumulation, as evidenced by numerous black ‘marine-band’ shales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号