首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   4篇
大气科学   5篇
地球物理   18篇
地质学   30篇
海洋学   9篇
天文学   10篇
自然地理   12篇
  2023年   2篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
21.
Reeve et al. (2022) address the stratigraphic record of continental breakup by focusing on a set of stratigraphic unconformities from a proximal sector of the NW Australian continental margin, inboard from the Exmouth Plateau. They suggest that such unconformities can potentially document a well-defined three-stage process: end of the syn-rift phase, formation of a wide continent-ocean transition zone (COTZ) and generation of ‘true’ Penrose-type oceanic crust. We counterargue that continental breakup is a protracted event that can only be understood via seismic- and chronostratigraphic correlations of strata, and their composing sequences, across and along rifted margins. Tying proximal stratigraphic unconformities to magnetic anomalies outboard from the study area in Reeve et al. (2022) is open to question. In parallel, we suggest that age resolutions of ca. 1 Ma are not achievable using the micropaleontological data presented in Reeve et al. (2022), with an important reworking of microfossil assemblages potentially occurring during the erosional process forming local and regional unconformities. Our discussion addresses these points in more detail.  相似文献   
22.
Using N -body simulations of flat, dark energy-dominated cosmologies, we show that galaxies around simulated binary systems resembling the Local Group (LG) have low peculiar velocities, in good agreement with observational data. We have compared results for LG-like systems selected from large, high-resolution simulations of three cosmologies: a ΛCDM model, a ΛWDM model with a 2-keV warm dark matter candidate, and a quintessence (QCDM) model with an equation-of-state parameter   w =−0.6  . The Hubble flow is significantly colder around LGs selected in a flat, Λ-dominated cosmology than around LGs in open or critical models, showing that a dark energy component manifests itself on the scales of nearby galaxies, cooling galaxy peculiar motions. Flows in the ΛWDM and QCDM models are marginally colder than in the ΛCDM one.
The results of our simulations have been compared to existing data and to a new data set of 28 nearby galaxies with robust distance measures (Cepheids and surface brightness fluctuations). The measured line-of-sight velocity dispersion is given by  σH= (88 ± 20  km s−1) × ( R /7 Mpc)  . The best agreement with observations is found for LGs selected in the ΛCDM cosmology in environments with  −0.1 < δρ/ρ < 0.6  on scales of 7 Mpc, in agreement with existing observational estimates on the local matter density. These results provide new, independent evidence for the presence of dark energy on scales of a few megaparsecs, corroborating the evidence gathered from observations of distant objects and the early Universe.  相似文献   
23.
Local food has become a significant focus of food studies analysis in recent years with much of this work identifying the potential environmental, social and economic benefits of food localisation. However, a growing body of literature destabilises these assumed benefits with research now questioning the utility of scale in assessing food system outcomes. This paper explores this destabilisation by examining how concepts associated with the ‘local’ have been deployed by the Capital Region Farmers Market (CRFM) in the Australian Capital Territory (ACT). This leads to two key conclusions: firstly, the practical case study confirms theoretical insights highlighting the instability of the local, identifying how it is animated in multiple and sometimes contradictory ways often in response to conventional market forces; and secondly, we argue that the role of farmers' markets may not be best understood through the lens of the local but, rather, through their role in facilitating citizen engagement with the food system via the direct consumer–producer relationship at markets and the characteristics of the food purchased there (i.e. freshness and quality). In these ways, farmers' markets can disrupt conventional forms of engagement with the food system, creating a space that enhances social embeddedness and which may promote new forms of consumer understanding of food systems.  相似文献   
24.
The Sierra Madre Occidental of northwestern Mexico is the biggest silicic large igneous province of the Cenozoic, yet very little is known about its geology due to difficulties of access to much of this region. This study presents geologic maps and two new U-Pb zircon laser ablation inductively coupled plasma mass spectrometry ages from the Cerocahui basin, a previously unmapped and undated ~25 km-long by ~12 km-wide half-graben along the western edge of the relatively unextended core of the northern Sierra Madre Occidental silicic large igneous province. Five stratigraphic units are defined in the study area: (1) undated welded to non-welded silicic ignimbrites that underlie the rocks of the Cerocahui basin, likely correlative to Oligocene-age ignimbrites to the east and west; (2) the ca. 27.5–26 Ma Bahuichivo volcanics, comprising mafic-intermediate lavas and subvolcanic intrusions in the Cerocahui basin; (3) alluvial fan deposits and interbedded distal non-welded silicic ignimbrites of the Cerocahui clastic unit; (4) basalt lavas erupted into the Cerocahui basin following alluvial deposition; and (5) silicic hypabyssal intrusions emplaced along the eastern margin of the basin and to a lesser degree within the basin deposits.

The main geologic structures in the Cerocahui basin and surrounding region are NNW-trending normal faults, with the basin bounded on the east by the syndepositional W-dipping Bahuichivo–Bachamichi and Pañales faults. Evidence of syndepositional extension in the half-graben (e.g. fanning dips, unconformities, coarsening of clastic deposits toward basin-bounding faults) indicates that normal faulting was active during deposition in the Cerocahui basin (Bahuichivo volcanics, Cerocahui clastic unit, and basalt lavas), and may have been active earlier based on regional correlations.

The rocks in the Cerocahui basin and adjacent areas record: (1) the eruption of silicic outflow ignimbrite sheets, likely erupted from caldera sources to the east during the early Oligocene pulse of the mid-Cenozoic ignimbrite flare-up, mostly prior to synextensional deposition in the Cerocahui basin (pre-27.5 Ma); (2) synextensional late Oligocene mafic-intermediate composition magmatism and alluvial fan sedimentation (ca. 27.5–24.5 Ma), which occurred during the lull between the Early Oligocene and early Miocene pulses of the ignimbrite flare-up; and (3) post-extensional emplacement of silicic hypabyssal intrusions along pre-existing normal faults, likely during the early Miocene pulse of the ignimbrite flare-up (younger than ca. 24.5 Ma). The timing of extensional faulting and magmatism in the Cerocahui basin and surrounding area generally coincides with previous models of regional-scale middle Eocene to early Miocene southwestward migration of active volcanism and crustal extension in the northern Sierra Madre Occidental controlled by post-late Eocene (ca. 40 Ma) rollback/fallback of the subducted Farallon slab.  相似文献   
25.
The last glacial-interglacial transition (LGIT; 19–9 ka) was characterized by rapid climate changes and significant ecosystem reorganizations worldwide. In western Colorado, one of the coldest locations in the continental US today, mountain environments during the late-glacial period are poorly known. Yet, archaeological evidence from the Mountaineer site (2625 m elev.) indicates that Folsom-age Paleoindians were over-wintering in the Gunnison Basin during the Younger Dryas Chronozone (YDC; 12.9–11.7 ka). To determine the vegetation and fire history during the LGIT, and possible explanations for occupation during a period thought to be harsher than today, a 17-ka-old sediment core from Lily Pond (3208 m elev.) was analyzed for pollen and charcoal and compared with other high-resolution records from the southern Rocky Mountains. Widespread tundra and Picea parkland and low fire activity in the cold wet late-glacial period transitioned to open subalpine forest and increased fire activity in the BøllingAllerød period as conditions became warmer and drier. During the YDC, greater winter snowpack than today and prolonged wet springs likely expanded subalpine forest to lower elevations than today, providing construction material and fuel for the early inhabitants. In the early to middle Holocene, arid conditions resulted in xerophytic vegetation and frequent fire.  相似文献   
26.
A metre‐long transparent tube for measuring visual water clarity was developed as part of the New Zealand Stream Health Monitoring and Assessment Kit (SHMAK) for use by non‐scientists. Water clarity measured using the tube (the horizontal sighting range of a black target) was compared with that measured using the standard “black disk” method (in which a black target is viewed horizontally underwater) to determine the feasibility of estimating black disk clarities from clarity tube readings. Readings using the two methods showed good agreement for waters with clarity <c. 50 cm. In clearer waters the slope of the relationship depends on the reflectivity of the background material used in the clarity tube. With a reflective background (white, reflectance c. 75%; or grey, reflectance c. 55%), the clarity tube readings are directly proportional and approximately equal to the black disk readings. With a black background (reflectance c. 5.5%), clarity tube readings >c. 50 cm are lower than the black disk visibility and follow a logarithmic relationship with visibility, which enables useful readings to be made in clearer water. Independent testing of the relationship showed that black disk visibilities may be predicted with reasonable confidence in waters that contain very low concentrations of dissolved humic materials (yellow substance). In waters that are noticeably brown‐coloured, the relationship is less consistent especially at black disk visibilities of more than 1.5 m. Recommendations are given for the use of the clarity tube.  相似文献   
27.
IODP Expedition 350 was the first to be drilled in the rear part of the Izu-Bonin, although several sites had been drilled in the arc axis to fore-arc region; the scientific objective was to understand the evolution of the Izu rear arc, by drilling a deep-water volcaniclastic section with a long temporal record (Site U1437). The Izu rear arc is dominated by a series of basaltic to dacitic seamount chains up to ~100-km long roughly perpendicular to the arc front. Dredge samples from these are geochemically distinct from arc front rocks, and drilling was undertaken to understand this arc asymmetry. Site U1437 lies in an ~20-km-wide basin between two rear arc seamount chains, ~90-km west of the arc front, and was drilled to 1804 m below the sea floor (mbsf) with excellent recovery. We expected to drill a volcaniclastic apron, but the section is much more mud-rich than expected (~60%), and the remaining fraction of the section is much finer-grained than predicted from its position within the Izu arc, composed half of ashes/tuffs, and half of lapilli tuffs of fine grain size (clasts <3 cm). Volcanic blocks (>6.4 cm) are only sparsely scattered through the lowermost 25% of the section, and only one igneous unit was encountered, a rhyolite peperite intrusion at ~1390 mbsf. The lowest biostratigaphic datum is at 867 mbsf (~6.5 Ma), the lowest palaeomagnetic datum is at ~1300 mbsf (~9 Ma), and the rhyolite peperite at ~1390 mbsf has yielded a U–Pb zircon concordia intercept age of (13.6 + 1.6/?1.7) Ma. Both arc front and rear arc sources contributed to the fine-grained (distal) tephras of the upper 1320 m, but the coarse-grained (proximal) volcaniclastics in the lowest 25% of the section are geochemically similar to the arc front, suggesting arc asymmetry is not recorded in rocks older than ~13 Ma.  相似文献   
28.
29.
Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235–270 °C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220–240 °C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (< 6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (≤ 161 °C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N–S oriented normal faulting and E–W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5–10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ≤ 123 °C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N2-rich, arc-type component and gases derived from air-saturated meteoric recharge water. Most gases have relatively weak isotopic indicators of upper mantle or volcanic components, except for gas from Sulphur Works where δ13C–CO2, δ34S–H2S, and δ15N–N2 values indicate a contribution from the mantle and a subducted sediment source in an arc volcanic setting.  相似文献   
30.
Land surface models and Earth system models that include Arctic landscapes must capture the abrupt hydrological transitions that occur during the annual thaw and deepening of the active layer. In this work, stable water isotopes (δ2H and δ18O) are used to appraise hydrologically significant transitions during annual landscape thaw at the Barrow Environmental Observatory (Utqiaġvik, Alaska). These hydrologically significant periods are then linked to annual shifts in the landscape energy balance, deduced from meteorological data and described by the microclimatic periods: Winter, Pre-Melt, Melt, Post-Melt, Summer, and Freeze-Up. The tight coupling of the microclimatic periods with the hydrological transitions supports the use of microclimatic periods as a means of linking polygonal surface water hydrology to meteorological datasets, which provides a mechanism for improving the representation of polygonal surface water hydrology in process-based models. Rayleigh process reconstruction of the isotopic changes revealed that 19% of winter precipitation was lost to sublimation prior to melting and that 23% of surface water was lost to evaporation during the first 10 days post-melt. This agrees with evaporation rates reported in a separate study using an eddy covariance flux tower located nearby. An additional 17% was lost to evaporation during the next 33 days. Stable water isotopes are also used to identify the dominant sources of surface water to various hydrogeomorphological features prevalent in polygonal terrain (a lake, a low centre polygon centre, troughs within the rims of low centre polygons, flat centre polygon troughs, a high centre polygon trough, and drainages). Hydrogeomorphologies that retained significant old water or acted as snow drifts are isotopically distinct during the Melt Period and therefore are easily distinguished. Biogeochemical changes related to the annual thaw are also reported and coupled to the hydrological transitions, which provides insight into the sources and sinks of these ions to and from the landscape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号