首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   5篇
测绘学   1篇
大气科学   2篇
地球物理   8篇
地质学   35篇
海洋学   12篇
天文学   29篇
自然地理   6篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   11篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有93条查询结果,搜索用时 0 毫秒
91.
Gibbs energy minimization is the means by which the stable state of a system can be computed as a function of pressure, temperature and chemical composition from thermodynamic data. In this context, state implies knowledge of the identity, amount, and composition of the various phases of matter in heterogeneous systems. For seismic phenomena, which occur on time-scales that are short compared to the timescales of intra-phase equilibration, the Gibbs energy functions of the individual phases are equations of state that can be used to recover seismic wave speeds. Thermodynamic properties relevant to modelling of slower geodynamic processes are recovered by numeric differentiation of the Gibbs energy function of the system obtained by minimization. Gibbs energy minimization algorithms are categorized by whether they solve the non-linear optimization problem directly or solve a linearized formulation. The former express the objective function, the total Gibbs energy of the system, indirectly in terms of the partial molar Gibbs energies of phase species rather than directly in terms of the Gibbs energies of the possible phases. The indirect formulation of the objective function has the consequence that although these algorithms are capable of attaining high precision they have no generic means of treating phase separation and expertise is required to avoid local minima. In contrast, the solution of the fully linearized problem is completely robust, but offers limited resolution. Algorithms that iteratively refine linearized solutions offer a compromise between robustness and precision that is well suited to the demands of geophysical modeling.  相似文献   
92.
A new seasonal and annual dataset describing Arctic sea ice extents for 1901–2015 was constructed by individually re-calibrating sea ice data sources from the three Arctic regions (North American, Nordic and Siberian) using the corresponding surface air temperature trends for the pre-satellite era (1901–1978), so that the strong relationship between seasonal sea ice extent and surface air temperature observed for the satellite era (1979-present) also applies to the pre-satellite era. According to this new dataset, the recent period of Arctic sea ice retreat since the 1970s followed a period of sea ice growth after the mid-1940s, which in turn followed a period of sea ice retreat after the 1910s. Arctic sea ice is a key component of the Arctic hydrological cycle, through both its freshwater storage role and its influence on oceanic and atmospheric circulation. Therefore, these new insights have significance for our understanding of Arctic hydrology.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   
93.
NASA's OSIRIS-REx spacecraft collected samples from carbonaceous near-Earth asteroid (101955) Bennu on October 20, 2020, and will deliver them to the Earth on September 24, 2023. The samples will be processed at the NASA Johnson Space Center (JSC), where most of the sample collection will be subsequently curated in a new cleanroom suite. The spacecraft collected loose regolith two ways: in a bulk sample chamber capable of holding up to 2 kg, and on industrial Velcro “contact pads” intended to collect small particles at the surface. Included in the JSC collection will be the bulk sample, the contact pads, contamination-monitoring witness plates, and supporting hardware. Planning for the curation of the samples and hardware started at the earliest phase of proposal development and continued in parallel with project development and execution. Because a major mission goal is characterization of organic compounds in the Bennu samples, extra effort was spent in the design stage to ensure a clean curation environment. Here, we describe the preparations to receive the sample, including the design, construction, outfitting, and monitoring of the cleanrooms at JSC; the planned recovery of the sample-containing capsule when it lands on Earth; and the approach to characterizing and cataloging the samples. These curation efforts will result in the distribution of pristine Bennu samples from JSC to the OSIRIS-REx science team, international partners, and the global scientific community for years to come.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号