首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   16篇
  国内免费   2篇
测绘学   23篇
大气科学   40篇
地球物理   73篇
地质学   128篇
海洋学   46篇
天文学   156篇
综合类   1篇
自然地理   42篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   9篇
  2017年   9篇
  2016年   17篇
  2015年   7篇
  2014年   13篇
  2013年   17篇
  2012年   17篇
  2011年   22篇
  2010年   18篇
  2009年   28篇
  2008年   20篇
  2007年   23篇
  2006年   18篇
  2005年   16篇
  2004年   24篇
  2003年   15篇
  2002年   18篇
  2001年   17篇
  2000年   13篇
  1999年   12篇
  1998年   14篇
  1997年   7篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   7篇
  1988年   8篇
  1987年   4篇
  1986年   7篇
  1985年   8篇
  1984年   15篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1977年   3篇
  1976年   3篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
  1972年   6篇
排序方式: 共有509条查询结果,搜索用时 15 毫秒
501.
Shallow Drainage Flows   总被引:1,自引:1,他引:0  
Two-dimensional sonic anemometers and slowresponse thermistors were deployedacross a shallow gully during CASES99. Weak gully flow of a few tenths of m s-1 anda depth of a few metres develops in the earlyevening on most nights with clear skies.Flow down the gully developed sometimes evenwhen the opposing ambient wind exceeded10 m s-1 at the top of the60–m tower. Cold air drainage fromlarger-scale slopes flows over the top ofthe colder gully flow. The gully flowand other drainage flows are generally eliminated in the middle of the night in conjunctionwith flow acceleration abovethe surface inversion layer and downwardmixing of warmer air and highermomentum. As the flow decelerates later inthe night, the gully flow may re-form.The thin drainage flows decouple standard observational levels of3–10 m from the surface.Under such common conditions, eddy correlationflux measurements cannot be used toestimate surface fluxes nor even detect thethin gully and drainage flows. The gentlegully system in this field program is typical ofmuch of the Earths land surface.  相似文献   
502.
The Solar Dynamics Observatory (SDO) was launched on 11 February 2010 at 15:23 UT from Kennedy Space Center aboard an Atlas V 401 (AV-021) launch vehicle. A?series of apogee-motor firings lifted SDO from an initial geosynchronous transfer orbit into a circular geosynchronous orbit inclined by 28° about the longitude of the SDO-dedicated ground station in New Mexico. SDO began returning science data on 1 May 2010. SDO is the first space-weather mission in NASA’s Living With a Star (LWS) Program. SDO’s main goal is to understand, driving toward a predictive capability, those solar variations that influence life on Earth and humanity’s technological systems. The SDO science investigations will determine how the Sun’s magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. Insights gained from SDO investigations will also lead to an increased understanding of the role that solar variability plays in changes in Earth’s atmospheric chemistry and climate. The SDO mission includes three scientific investigations (the Atmospheric Imaging Assembly (AIA), Extreme Ultraviolet Variability Experiment (EVE), and Helioseismic and Magnetic Imager (HMI)), a spacecraft bus, and a dedicated ground station to handle the telemetry. The Goddard Space Flight Center built and will operate the spacecraft during its planned five-year mission life; this includes: commanding the spacecraft, receiving the science data, and forwarding that data to the science teams. The science investigations teams at Stanford University, Lockheed Martin Solar Astrophysics Laboratory (LMSAL), and University of Colorado Laboratory for Atmospheric and Space Physics (LASP) will process, analyze, distribute, and archive the science data. We will describe the building of SDO and the science that it will provide to NASA.  相似文献   
503.
The problem of assimilating biased and inaccurate observations into inadequate models of the physical systems from which the observations were taken is common in the petroleum and groundwater fields. When large amounts of data are assimilated without accounting for model error and observation bias, predictions tend to be both overconfident and incorrect. In this paper, we propose a workflow for calibration of imperfect models to biased observations that involves model construction, model calibration, model criticism and model improvement. Model criticism is based on computation of model diagnostics which provide an indication of the validity of assumptions. During the model improvement step, we advocate identification of additional physically motivated parameters based on examination of data mismatch after calibration and addition of bias correction terms. If model diagnostics indicates the presence of residual model error after parameters have been added, then we advocate estimation of a “total” observation error covariance matrix, whose purpose is to reduce weighting of observations that cannot be matched because of deficiency of the model. Although the target applications of this methodology are in the subsurface, we illustrate the approach with two simplified examples involving prediction of the future velocity of fall of a sphere from models calibrated to a short-time series of biased measurements with independent additive random noise. The models into which the data are assimilated contain model errors due to neglect of physical processes and neglect of uncertainty in parameters. In every case, the estimated total error covariance is larger than the true observation covariance implying that the observations need not be matched to the accuracy of the measuring instrument. Predictions are much improved when all model improvement steps were taken.  相似文献   
504.
Naturally occurring iron from soil and aquifer sediments at waste disposal sites often becomes liberated into groundwater as a result of reductive dissolution. Research was conducted to evaluate an appropriate procedure for assessing a soil’s propensity to undergo iron reductive dissolution. Soil samples collected from waste disposal sites in Florida were characterized by pH, organic carbon content, total iron content, amorphous iron content, citrate-dithionite-bicarbonate extractable iron, and qualitative X-ray diffraction analysis, followed by a series of extraction tests designed to simulate the reductive dissolution process. Over a 30-day period, biological reducing tests released 13–260 mg/kg Fe(II) from soils, and a chemical reducing test released 2.2–178 mg/kg Fe(II) from soils. Soil amorphous iron content was shown to be the most effective parameter for assessment of iron reductive dissolution potential through standard soil characterization. These results suggest that biological reducing tests may be helpful for assessing long-term soil iron reductive dissolution potential, and that soil amorphous iron content provides a good indication of the potential for a soil to undergo reductive dissolution at a landfill site.  相似文献   
505.
With increased shoreline hardening and development, it is important to understand the ecological processes occurring in these and adjacent coastal habitats. A common species found associated with these hard-substrate habitats in Chesapeake Bay is the grass shrimp, Palaemonetes pugio. Caging experiments were conducted from June to August 2010 to examine the effects of shrimp on the recruitment and development of hard-substrate communities. Experiments were conducted at two low-salinity sites within Chesapeake Bay and one high-salinity site in an adjacent coastal bay in Virginia. The addition of grass shrimp reduced recruitment of polychaetes and scyphistomae of the sea nettle, Chrysaora quinquecirrha, and increased recruitment of encrusting bryozoans and the oyster, Crassostrea virginica. After 12?weeks, sea nettles at one low-salinity site, dominated predator-exclusion treatments. At the high-salinity site, oysters dominated when shrimp were present. Although it is unclear whether the results of short-term caging studies can be applied across larger temporal and spatial scales, the significant effects of grass shrimp on two important Chesapeake Bay species suggests that increases in hard-substrate habitat could have broader impacts within this and other systems.  相似文献   
506.
An investigation into the late Pleistocene sediments exposed at Afton Lodge has helped to clarify the glacial history of western central Scotland. The sequence includes several allochthonous bodies of ‘shelly clay’ (Afton Lodge Clay Formation) associated with Late Devensian (Weichselian) age diamict. The shelly clay contains abundant marine macro- and microfauna, as well as palynomorphs consistent with its deposition within a shallow marine to estuarine environment. Faunal changes within the main body of marine clay record at least one, millennial-scale cycle of Arctic-Boreal, to Boreal, and back to Arctic-Boreal climatic conditions. A radiocarbon date of over 41 ka 14C BP obtained from the foraminifera indicates that the marine clays are older than the surrounding till. Afton Lodge is thus one of a suite of ‘high-level’ shelly clay occurrences around the Scottish coasts that are now considered to be glacially transported. Together with closely associated ‘shelly tills’, the rafts were emplaced during an early phase of the last glaciation by ice flowing from the western Grampian Highlands of Scotland through the topographically-confined Firth of Clyde basin. The blocks of marine sediment were detached subglacially, unfrozen, and carried at least 10 km by ice that splayed out onshore against reversed slopes favouring raft emplacement and the creation of closely associated ribbed moraine. Transport of the rafts was facilitated by water-lubricated décollement surfaces and their accretion was accompanied by dewatering. The shelly tills were formed mainly by the attenuation and crushing of rafts of shelly clay during their transport within the subglacial deforming bed.  相似文献   
507.
Exploratory data analysis of a high‐resolution (hook‐by‐hook), 6‐year time series (1993–98) of observed longline catch data for tunas was used to investigate fine‐scale spatial patterns along individual sets that may be indicative of social behaviour (i.e., schooling) and/or the response of individual fish to favourable extrinsic conditions (i.e., aggregation). Methods of spatial data analysis (i.e., nearest neighbour analysis) that have previously been applied in various other sciences (e.g., forestry and astronomy) were used. Results indicate strong clustering of individual tunas at characteristic scales within the set. Mean Nearest Neighbour Distances (NNDs) were between 100 and 200 m, compared with NNDs of 200–700 m predicted by a heterogeneous Poisson process on the same spatial domain. The results suggest that these adult tunas were either schooling or aggregating at the time of capture; this may therefore be related either to social behaviour or to sub‐mesoscale oceanographic features. An aggregation index was derived from the NNDs, giving a classification method that may be used for similar data and the development of empirical models attempting to relate patterns in fish catch distributions to environmental variables. The success of such models will ultimately depend on elucidating the ecological processes reflected in oceanographic features at biologically meaningful spatial scales.  相似文献   
508.
Ocean temperature changes between 1991 and 2005 in the eastern Tasman Sea were analysed. This area was chosen because of a combination of data availability, low mesoscale variability and because of its importance in determining the climate of the downwind New Zealand landmass. A large warming extending to the full depth of the water column (c. 800 m) was found to have occurred between 1996 and 2002. This warming was seen in measurements by expendable bathythermographs and also in satellite sea surface temperature and sea surface height products, and has a clear impact on New Zealand's terrestrial temperature. The nature of the warming is discussed, together with likely forcing mechanisms. No local forcing mechanisms are consistent with the observed warming, leading to the conclusion that the signal seen in the Tasman Sea is part of a larger South Pacific‐wide phenomenon.  相似文献   
509.
The ensemble Kalman filter has been successfully applied for data assimilation in very large models, including those in reservoir simulation and weather. Two problems become critical in a standard implementation of the ensemble Kalman filter, however, when the ensemble size is small. The first is that the ensemble approximation to cross-covariances of model and state variables to data can indicate the presence of correlations that are not real. These spurious correlations give rise to model or state variable updates in regions that should not be updated. The second problem is that the number of degrees of freedom in the ensemble is only as large as the size of the ensemble, so the assimilation of large amounts of precise, independent data is impossible. Localization of the Kalman gain is almost universal in the weather community, but applications of localization for the ensemble Kalman filter in porous media flow have been somewhat rare. It has been shown, however, that localization of updates to regions of non-zero sensitivity or regions of non-zero cross-covariance improves the performance of the EnKF when the ensemble size is small. Localization is necessary for assimilation of large amounts of independent data. The problem is to define appropriate localization functions for different types of data and different types of variables. We show that the knowledge of sensitivity alone is not sufficient for determination of the region of localization. The region depends also on the prior covariance for model variables and on the past history of data assimilation. Although the goal is to choose localization functions that are large enough to include the true region of non-zero cross-covariance, for EnKF applications, the choice of localization function needs to balance the harm done by spurious covariance resulting from small ensembles and the harm done by excluding real correlations. In this paper, we focus on the distance-based localization and provide insights for choosing suitable localization functions for data assimilation in multiphase flow problems. In practice, we conclude that it is reasonable to choose localization functions based on well patterns, that localization function should be larger than regions of non-zero sensitivity and should extend beyond a single well pattern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号