首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   18篇
  国内免费   3篇
测绘学   4篇
大气科学   26篇
地球物理   47篇
地质学   128篇
海洋学   14篇
天文学   24篇
自然地理   14篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   13篇
  2018年   6篇
  2017年   3篇
  2016年   14篇
  2015年   19篇
  2014年   11篇
  2013年   12篇
  2012年   10篇
  2011年   14篇
  2010年   19篇
  2009年   20篇
  2008年   17篇
  2007年   7篇
  2006年   11篇
  2005年   7篇
  2004年   8篇
  2003年   8篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1969年   1篇
排序方式: 共有257条查询结果,搜索用时 31 毫秒
161.
Recharge areas of the Guarani Aquifer System (GAS) are particularly sensitive and vulnerable to climate variability; therefore, the understanding of infiltration mechanisms for aquifer recharge and surface run‐off generation represent a relevant issue for water resources management in the southeastern portion of the Brazilian territory, particularly in the Jacaré‐Pepira River watershed. The main purpose of this study is to understand the interactions between precipitation, surface water, and groundwater using stable isotopes during the strong 2014–2016 El Niño Southern Oscillation event. The large variation in the isotopic composition of precipitation (from ?9.26‰ to +0.02‰ for δ18O and from ?63.3‰ to +17.6‰ for δ2H), mainly associated with regional climatic features, was not reflected in the isotopic composition of surface water (from ?7.84‰ to ?5.83‰ for δ18O and from ?49.7‰ to +33.6‰ for δ2H), mainly due to the monthly sampling frequency, and groundwater (from ?7.04‰ to ?7.76‰ for δ18O and from ?49.5‰ to ?44.7‰ for δ2H), which exhibited less variation throughout the year. However, variations in deuterium excess (d‐excess) in groundwater and surface water suggest the occurrence of strong secondary evaporation during the infiltration process, corresponding with groundwater level recovery. Similar isotopic composition in groundwater and surface water, as well as the same temporal variations in d‐excess and line‐conditioned excess denote the strong connectivity between these two reservoirs during baseflow recession periods. Isotopic mass balance modelling and hydrograph separation estimate that the groundwater contribution varied between 70% and 80%, however, during peak flows, the isotopic mass balance tends to overestimate the groundwater contribution when compared with the other hydrograph separation methods. Our findings indicate that the application of isotopic mass balance methods for ungauged rivers draining large groundwater reservoirs, such as the GAS outcrop, could provide a powerful tool for hydrological studies in the future, helping in the identification of flow contributions to river discharge draining these areas.  相似文献   
162.
The sustainability of groundwater resources for agricultural and domestic use is dependent on both the groundwater recharge rate and the groundwater quality. The main purpose of this study was to improve the understanding of the timing, or seasonality, of groundwater recharge through the use of stable isotopes. Based on 768 groundwater samples collected from aquifers underlying natural resources districts in Nebraska, the isotopic composition of groundwater (δ2H and δ18O) was compared with that of precipitation by (a) mapping the isotopic composition of groundwater samples and (b) mapping a seasonality index for groundwater. Results suggest that for the majority of the state, groundwater recharge has a nongrowing season signature (October–April). However, the isotopic composition of groundwater suggests that in some intensively irrigated areas, human intervention in the water cycle has shifted the recharge signature towards the growing season. In other areas, a different human intervention (diversion of Platte River water for irrigation) has likely produced an apparent but possibly misleading nongrowing season recharge signal because the Platte River water differs isotopically from local precipitation. These results highlight the need for local information even when interpreting isotopic data over larger regions. Understanding the seasonality of recharge can provide insight into the optimal times to apply fertilizer, specifically in highly conductive soils with high leaching potential. In areas with high groundwater nitrate concentrations, this information is valuable for protecting the groundwater from further degradation. Although previous studies have framed nongrowing season recharge within the context of future climate change, this study also illustrates the importance of understanding how historical human intervention in the water cycle has affected groundwater recharge seasonality and subsequent implications for groundwater recharge and quality.  相似文献   
163.
The recent tectonics of the arid northern Chile Andean western forearc is characterized by trench‐parallel normal faults within the Atacama Fault System (AFS). Since the 1995‐Mw 8.1 Antofagasta earthquake, the mechanism driving this recent and localized extension is considered to be associated with the seismic cycle within the subduction zone. Analyzing morphotectonic patterns along these faults allows examining the seismic potential associated with the subduction zone. Using field Digital Elevation Models and in situ‐produced cosmogenic 10Be, we determined a 0.2 mm/a long‐term slip rate along the Mejillones Fault, one of the most prominent structures within the AFS. This result suggests that the AFS corresponds to slow slip rate faults despite the rapid subduction context. However, the size of coseismic slips observed along the AFS faults suggests that larger subduction earthquakes (Mw > 8.1) may occur episodically in the area.  相似文献   
164.
165.
We document the first occurrence of Fe‐rich olivine‐bearing migmatitic metapelite in the Khondalite Belt, North China Craton. Petrological analyses revealed two exotic assemblages of orthopyroxene+spinel+olivine and orthopyroxene+spinel+cordierite. Phase relation modelling suggests that these assemblages are diagnostic of ultra‐high temperature (UHT) metamorphism in the Fe‐rich system, with temperatures from 1,000 to 1,050°C at 0.6 GPa. U–Th–Pb SIMS analyses on zircon reveal a similar age of c. 1.92 Ga for the olivine‐bearing migmatite and an adjacent gabbronoritic intrusion that is therefore identified as the heat source for the UHT metamorphism. These results, coupled with additional analysis of the famous Tuguiwula sapphirine‐bearing granulite, lead to a re‐appraisal of the P–T path shape and heat source for the UHT metamorphism. We suggest that UHT metamorphism, dated between 1.92 and 1.88 Ga, across the whole Khondalite belt, proceeded from a clockwise P–T evolution with an initial near‐isobaric heating path at ~0.6–0.8 GPa, and a maximum temperature of 1,050°C followed by a cooling path with minor decompression to ~0.5 GPa. Considering our results and previous works, we propose that the orogenic crust underwent partial melting at temperature reaching 850°C and depth of ~20 to ~30 km during a period of c. 30 Ma, between 1.93 and 1.90 Ga. During this time span, the partially molten crust was continuously intruded by mafic magma pulses responsible for local greater heat supply and UHT metamorphism above 1,000°C. We propose that the UHT metamorphism in the Khondalite belt is not related to an extensional post‐collisional event, but is rather syn‐orogenic and associated with mafic magma supplies.  相似文献   
166.
Large rock falls and rockslides represent a risk for human communities in mountainous areas as they can cause fatalities and destruction of settlements and infrastructures. Assessing the associated hazard requires constraining the time frequency of such events. Since large rockslides are not common, estimating their frequency requires recording them over a long period of time. The Holocene period then appears as pertinent, which implies that rockslide features have to be dated with absolute chronology methods. This paper presents a characterisation and dating of the Lauvitel rockslide, one of the largest Holocene rockslides in the French Alps. Combining field observation with electrical tomography profiles performed on the rockslide deposit that constitutes the Lauvitel Lake dam allows estimating its volume at a minimum of 12?×?106?m3. In addition, cosmic ray exposure dating using in situ-produced 10Be concentration measurements has been applied to date seven samples collected both on the main sliding surface and on blocks lying on the dam and further downstream. Ages obtained are consistent with a single large rockslide event, which occurred at 4.7?±?0.4 10Be-ka and formed two distinct deposits. However, from a mechanical point of view, these clearly separated deposits could hardly result from a single movement. A comparison of their reach angles with those reviewed in the literature highlights that the lower deposit must result from rock avalanches larger than 107?m3, while the upper one (the Lauvitel dam) must result from several events smaller than 106?m3. In the context of hazard assessment for land use planning, these events can, however, be considered as a unique event.  相似文献   
167.
The Puy de Dôme volcano is a trachytic lava dome, about 11,000 y old. New pyroclastic layers originating from the volcano itself were discovered covering the summit and the flanks of the volcano. These pyroclastic layers do not fit with the previous interpretation, assuming a non-explosive dome-forming eruption. The tephra display pyroclastic surge features and exhibit fresh trachytic lapilli, basement lithics, allogeneous basaltic lava and clinker fragments requiring an open vent eruption. This ultimate eruption occurred after a period of rest, long enough for vegetation to develop on the volcano, as evidenced by carbonized plant fragments. Radiocarbon dating of some of these fragments gave an age of c.10,700 y also suggesting a significant rest duration.  相似文献   
168.
Here we review the methods presently available and expected in the near future for retrieving the tropospheric aerosol properties using remote sensing. Since all aerosol properties cannot be derived from space, measurements performed from the surface of the Earth are used to adjust the parameters that are not directly accessible and to limit the variability of the parameters that present a weaker sensitivity. The aerosol properties derived include the column concentration (expressed by the aerosol optical depth), the size (given by distribution of the aerosol in 2 to 3 size modes or measurement of the Angström coefficient), composition (expressed by the refractive index), shape and vertical profile. The article is restricted to aerosols that are within the troposphere since the techniques used for stratospheric aerosols are very specific.  相似文献   
169.
170.
The stability of underground mines represents a key issue for active and abandoned mines. Over the last few years, several collapses of underground mines in France have affected existing buildings and infrastructures. Many factors are generally identified as the cause of failures: pillar ageing, fractures, and pillars’ height to width ratio, etc. Among the treatment techniques available to prevent instability and reduce the deterioration of pillars, backfill is the most frequently used. A research programme, supported by the French Ministry of the Environment, was developed to study the operability of partial and total backfill using waste material in the Livry-Gargan gypsum mine (near Paris, France), where pillar height is 17 m. The paper focuses on: (1) the characterisation of the gypsum and fill material (laboratory and in situ tests), (2) the in situ measurements, involving 5 pillars equipped with 19 pressure cells, since 1999, (3) and numerical modelling of fractured pillars performed in order to improve understanding of the effects of backfill on the stability of room-and-pillar mines. The study clearly shows the operability and the advantages of partial and total backfill for short-term pillar stability. The induced horizontal pressure generated by backfill can reach 200 kPa. The use of numerical modelling also shows the effect of backfill on fractures and that backfill reduces indicatively the shear displacement and the opening of fractures. Numerical modelling helps in identifying the mechanisms of backfill and in a better understanding of the behaviour of backfilled mines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号