首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   8篇
大气科学   6篇
地球物理   44篇
地质学   64篇
海洋学   23篇
天文学   10篇
自然地理   4篇
  2023年   2篇
  2022年   1篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   9篇
  2010年   10篇
  2009年   12篇
  2008年   7篇
  2007年   7篇
  2006年   9篇
  2005年   1篇
  2004年   3篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1979年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
81.
The effect of Mg-, Ca-, and Sr–Uranyl-Carbonato complexes with respect to sorption on quartz was studied by means of batch experiments with U(VI) concentration of 0.126 × 10−6 M in the presence and absence of Mg, Ca, and Sr (each 1 mM) at pH from 6.5 to 9. In the absence of alkaline earth elements, 90% of the U(VI) sorbed on the quartz surface at all pH. In the presence of Mg, Ca, and Sr, the sorption of U(VI) on quartz decreased to 50, 10, and 30%, respectively. Sorption kinetics of U(VI) on quartz is faster in the absence of alkaline earth elements and reached equilibrium after 12 h, whereas in the presence of Mg, Ca and Sr, the kinetics of U(VI) sorption on quartz is pH dependent and attained equilibrium after 24 h. Aqueous speciation calculations for alkaline earth uranyl carbonates were carried out by using PHREEQC with the Nuclear Energy Agency thermodynamic database (NEA_2007) by adding constants for MUO2(CO3)32− and M2UO2(CO3)30 (M = Ca, Mg, Sr). This study reveals that alkaline earth elements can have a significant effect on the aqueous speciation of U(VI) under neutral to alkaline pH conditions and subsequently sorption behavior and mobility of U(VI) in aqueous environments.  相似文献   
82.
Soil erosion by water is one of the most widespread forms of soil degradation in Europe. There are many undesirable consequences of soil erosion due to water such as loss of water storage capacity in reservoirs and transfer of pollutants from farmland to water bodies. The objectives of this study were to calibrate and validate the Water Erosion Prediction Project watershed model (WEPP 2012.8) in the Bautzen dam catchment area with monthly and daily single events for runoff and sediment yield. This is to our knowledge the first study using WEPP in Germany. The catchment (310 km2) was subdivided into small sub-catchments with an area of <260 ha as recommended in WEPP. A sensitivity analysis revealed that the runoff is highly sensitive to the effective hydraulic conductivity in Bautzen, whereas the sediment yield is highly sensitive to rill erodibility, critical shear stress, and to the effective hydraulic conductivity as well. All these parameters were initially calculated using WEPP’s built-in equations and parameters, which, however, produced very poor results for both runoff and sediment yield. Therefore, the model was calibrated for 2 years (2005–2007) and validated for another 2 years (2008–2009) against monthly measurements, in addition to 14 daily single events from the calibration period and 2010. The monthly results were compared with the monthly measurements on the basis of a continuous simulation. Results of calibration and validation periods show a satisfactory performance of WEPP with a determination coefficient R 2 above 0.6 and Nash–Sutcliffe efficiency coefficients above 0.50 for runoff and sediment yield. Thus, the model could be used to simulate runoff and sediment yield, and used in scenario studies in the Bautzen dam catchment area.  相似文献   
83.
Migration of uranium and arsenic in aquatic environments is often controlled by sorption on minerals present along the water flow path. To investigate the sorption behaviour, batch experiments were conducted for uranium and arsenic as single components and also solutions containing both uranium and arsenic in the presence of SiO2, Al2O3, TiO2 and FeOOH at a pH ranging from 3 to 9. In solutions containing only U(VI) or As(V) with the minerals, the sorption of U(VI) was low at acidic pH range and increases with increasing pH, whereas As(V) showed opposite sorption behaviour to Al2O3, TiO2 and FeOOH from acidic pH range to alkaline condition. For the As(V)–SiO2 system, the sorption was low for almost all pH. Sorption of U(VI) and As(V) on SiO2 and FeOOH is almost similar in solutions containing either U(VI) or As(V) separately, or both together. In the U(VI)–As(V)–Al2O3 system, a significant retardation in uranyl sorption and an enhancement in arsenate sorption on Al2O3 were observed for a wide range of pH. The sorption behaviour of U(VI) and As(V) was changed when Al2O3 was replaced by TiO2, where an increase in sorption was observed for both elements. The sorption behaviour of uranyl and arsenate in the U(VI)–As(V)–TiO2 system gives evidence for the formation of uranyl–arsenate complexes. The change in sorption retardation/enhancement of U(VI) and As(V) could be explained by the formation of uranyl–arsenate complexes or due to the competitive sorption between uranyl and arsenate species.  相似文献   
84.
Electrical resistivity surveying for delineating seawater intrusion was performed in the Dibdibba aquifer in the area between the cities of Al-Zubair–Safwan and Al-Zubair–Umm Qasr in the vicinity of Khor AL-Zubair Channel, Basrah governorate, southern Iraq. Fourteen 2D resistivity profiles with a total length of 14 km were collected in the study area. The resistivity sections were compared with lithological data extracted from 11 boreholes. Thirty-nine groundwater samples were collected within the area and analyzed for chemical constituents; internal hydrogeological reports and unpublished studies were also evaluated. Results reveal the existence of three major resistivity layers, ranging from 0.1 to 130 Ωm at various depths and locations. The first layer has very low electrical resistivity (0.1–5 Ωm) representing a layer saturated with saltwater intruded from Khor AL-Zubair Channel. The second layer shows resistivity in the range of 5–130 Ωm, attributed to a transition zone and an unaffected zone saturated with brackish groundwater. The last resistivity layer (<?3 Ωm) represents coarse-grain sediments saturated with saline groundwater. Furthermore, a hard clay bed (Jojab) appears with a resistivity of 3–7 Ωm in all 2D imaging lines within a depth of 20–28 m. Electrical conductivity (EC) measurements from seven wells collected in 2014 and 2016 show a positive EC difference increasing landward with an average increase of 1927 µS/cm. In addition, six chemical relationships (Na/Cl, [Ca?+?Mg]/[HCO3?+?SO4], SO4/HCO3, SO4/Cl, Mg/Ca and Cl/[HCO3?+?CO3]) are used to detect the source of salinity in groundwater. This study proves that extensive use of high-resolution 2D imaging sections, alongside lithological and hydrogeological data, can serve as a useful tool to delineate the boundaries between aquifers, identify hydraulic boundaries between groundwater with different salinities and allocate hard clay layers between the upper and lower Dibdibba aquifer. In general, the combination of 2D imaging and hydrochemistry enables conceptualization of the hydrogeological situation in the subsurface and characterization of the salinity source, here seawater intrusion, in the study area. There have been no studies published so far on the characteristics of saltwater intrusion in the study area, and this study is considered to be important for monitoring and studying the intrusion and regression of seawater.  相似文献   
85.
The Al-Batin alluvial fan covers a broad area of southern Iraq. It was the main battlefield of two devastating wars in 1991 and 2003, during which huge amounts of depleted uranium (DU) were used. This study aims to assess the geochemistry of this fan sediment including the potential effects of the DU used. Sixty-three samples were collected from sediments including three samples from sediments under tanks attacked by DU ammunition. Major elements were measured by XRF (fusion bead method), whereas ICP-MS was used to measure the trace elements. The results suggest that the most dominant major minerals are in the order of: quartz?>?secondary gypsum?>?calcite?>?feldspar, clay minerals?>?iron oxide, and show abnormal concentrations of Sr, Cr, Ni, and V. This study also determined an area with high concentration of U in the north east part of the fan. Statistical analysis and spatial distribution of important elements suggests that two major factors affect mineral formation. The first factor reflects the influence of minerals in the source area of the sediments (Arabian Shield): quartz, carbonate, clay minerals, feldspars, as well as iron oxides and elevated concentrations of V, Ni, and Cr. The second factor points at authigenic formation of secondary gypsum and celestite and elevated U concentration under the control of a hot arid climate and the specific groundwater situation. However, the origin of the sediments is geogenic, while the anthropogenic impact seems to be minor. Spatial distribution of U and the 235/238U ratio did not show any peaks in the places where tanks have been destroyed. This is contrary to media speculations and some scientific reports about the permanent risks of DU in the area, which creates public concern about the potential risk of living in this area.  相似文献   
86.
    
B. Merkel 《GeoJournal》1985,10(4):418
  相似文献   
87.
On protected mudflats and along sheltered tidal channel margins, wave- and current-generated ripples are frequently observed on surficial and subsurface mud beds, although such bedforms are generally not thought to occur in cohesive sediments. In this paper, examples of such ripple marks in the German Wadden Sea (back-barrier tidal flats of Spiekeroog island) and also along the west coast of Korea (Baeksu tidal flats) are documented and analyzed. The mud ripples are 5–8 cm in spacing and 0.3–0.8 cm in height, and are composed of slightly sandy to virtually pure mud (80–98% mud content). For the Spiekeroog study area, a comparison of in situ particle-size measurements of suspended matter and of dispersed mud collected from the ripples shows that the former consists of low-density flocs which are considerably larger than the constituent grains of the latter. To assess local wave effects, near-bed orbital velocities and orbital diameters were calculated on the basis of standard wave theory using estimated wave parameters at the time of the study (June 2004) as well as wave data recorded nearby within the back-barrier tidal basin. The relationships between grain size, morphometric ripple parameters, and the near-bed orbital diameter show the wave-generated mud ripples to be of the orbital post-vortex type. It is demonstrated that only short-period shoaling (intermediate water depth) waves with periods of 1.5–2.5 s and heights of 0.1–0.5 m are able to generate and maintain such ripples. Corresponding near-bed orbital velocities range from 8–32 cm s–1 and near-bed orbital diameters from 6.25–10 cm. It can be anticipated that increased current shear and turbulence associated with higher and longer waves prevent ripple formation due to the resuspension of settled mud, and the breakdown of suspended flocs and aggregates into smaller particles which then tend to remain in suspension. The most plausible explanation for the formation of the mud ripples is that mud flocs and aggregates deposited from suspension around high-water slack tide under moderate weather conditions initially respond as single (non-cohesive) particles which are hydraulically equivalent to ambient very fine sands. During exposure at low tide, gradual loss of water transforms the rippled mud into increasingly more cohesive mud drapes which are more resistant to erosion. Unless destroyed during high-energy events, the mud ripples may remain intact long enough to become buried and thereby preserved. Indeed, occasional but persistent observations of ripples in sub-Recent to ancient mudrocks document their preservation potential.  相似文献   
88.
Konarsiah salt diapir is situated in the Simply Folded Zone of the Zagros Mountain, south Iran. Eight small permanent brine springs emerge from the Konarsiah salt body, with average total dissolved solids of 326.7 g/L. There are numerous brackish to saline springs emerging from the alluvial and karst aquifers adjacent to the diapir. Concerning emergence of Konarsiah diapir in the study area, halite dissolution is the most probable source of salinity in the adjacent aquifers. However, other sources including evaporation and deep brines through deep Mangerak Fault are possible. The water samples of the study area were classified based on their water-type, salinity, and the trend of the ions concentration curves. The result of this classification is in agreement with the hydrogeological setting of the study area. The hydrochemical and isotopic evaluations show that the groundwater samples are the result of mixing of four end members; Gachsaran sulfate water, Sarvak and Asmari carbonate fresh waters, and diapir brine. The molar ratios of Na/Cl, Li/Cl, Br/Cl, and SO4/Cl; and isotopic signature of the mixed samples justify a groundwater mixing model for the aquifers adjacent to the salt diapir. The share of brine in each adjacent aquifer was calculated using Cl mass balance. In addition, concentrations of 34 trace elements were determined to characterize the diapir brine and to identify the possible tracers of salinity sources in the mixed water samples. B, Mn, Rb, Sr, Cs, Tl, and Te were identified as trace elements evidencing contact of groundwater with the salt diapir.  相似文献   
89.
Currently, the most widely accepted hypothesis to explain high As concentrations in Bangladesh groundwaters is that dissolved organic C (DOC) reduces solid Fe (hydr)oxides and mobilizes sorbed arsenate. The nature of the DOC and its release mechanism are still controversial. Based on weekly to biweekly sampling over the course of one monsoon cycle at six monitoring wells of different depths, it is proposed that storativity changes drive natural DOC release from clay–peat layers to the adjacent aquifers. With a decrease in hydraulic heads during the dry season, total mineralization and DOC concentrations increased. With the onset of the rainy season and an increase in hydraulic heads, release of clay–peat derived components stopped and vertical water displacement due to groundwater recharge from rainwater occurred, causing aquifer flushing and a decrease in total mineralization and DOC concentrations. Total As and DOC concentrations correlated over depth. However, at the depth of maximum concentrations, the As peak was observed during the rainy season. At present, the reason for this inverse seasonal trend between As and DOC is unclear. Higher mineralization or DOC concentrations could lead to increased As sorption or the increased arsenite release is a time-lag abiotic or microbial response to the DOC peak. The vulnerability of the Pleistocene aquifer towards increased As concentrations was found to be much higher than previously assumed. Though sorption capacities were determined to be higher than in the Holocene aquifer, probably due to intact Fe (hydr)oxides, long-term continuous As input from overlying clay and peat layers by the proposed seasonal storativity changes has led to increased aqueous As concentrations of 85 μg/L, considerably higher than drinking water standards. Until now, aquifer and especially aquitard and aquiclude hydraulics have not been considered sufficiently when attempting to explain As mobilization in Bangladesh.  相似文献   
90.
Groundwater samples from 33 locations within the Coastal Plain Sands aquifer of Calabar (Nigeria) were collected and analysed for 43 trace elements by means of ICP-MS. The aim of this study is to determine the natural background levels of trace elements as a guide for future pollution monitoring of the aquifer. Secondly, this article focuses on the pollution vulnerability of the coastal plain sand aquifer. Statistical methods have been used to determine the source(s) of these elements. Results show that the area is characterised by four types of groundwater, including: Na-HCO3, Na-HCO3-Cl, Na-Cl and Ca-Na-HCO3-Cl. Secondly, all the elements considered are below normal averages. In addition, the Spearman correlation shows significant correlation especially among the lanthanide group of elements (p<0.0001). Factors analyses indicate mainly two groups of elements. The first group being due to the natural geochemical process (weathering/leaching of the basement lithology; characteristics of the elements) and the second is due to tidal flushing of the estuary. This indicates that the source of the trace element in the aquifer is due to a geogenic process and not anthropogenic. Thus, the present data set will serve as a reference source for pollution monitoring in the area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号