首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
大气科学   4篇
地球物理   8篇
地质学   25篇
海洋学   15篇
自然地理   3篇
  2021年   1篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   6篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
51.
An extensive carbonate system in the Gulf of Papua (GoP), developed in the late Oligocene–middle Miocene, was buried by huge influx of siliciclastics originated from Papua New Guinea. Major episodes of siliciclastic influx in the carbonate system are related to tectonic activity in the fold and thrust belt during the Oligocene Peninsular Orogeny, late Miocene Central Range Orogeny, and late Pliocene renewed uplift and exhumation of peninsular region. Siliciclastics did not influence the carbonate deposition during the late Oligocene–middle Miocene, since they were accumulated in the Aure Trough, proximal foreland basin protecting the carbonate system. The most significant burial of the carbonate system started during the late Miocene–early Pliocene in the result of the Central Range Orogeny. However, the largest influx was related to the renewed uplift of the Papuan Peninsula during the early late Pliocene. The shelf edge prograded ∼150 km and formed more than 80% of the modern shelf. This high siliciclastic influx was also enhanced by the “mid” Pliocene global warmth period and intensified East Asian monsoons at 3.6–2.9 Ma. Although many publications exist on carbonate–siliciclastic mixing in different depositional environments, this study helps understand the carbonate–siliciclastic interactions in space and time, especially at basinal scale, and during different intervals of the carbonate system burial by siliciclastic sediments.  相似文献   
52.
Here we report on an investigation of the three-dimensional excitation-emission-matrix (EEM) fluorescence spectra of unconcentrated water samples collected in 1996, 1998 and 1999 at a site particularly propitious for macro-algae development. The degradation of these macro-algae was studied to determine the influence of their exudates on natural water EEM fluorescence spectra. This work demonstrates that biological activity is one of the major factors involved in the formation of the blue-shifted fluorescence band observed in marine waters (β component Ex/Em=310–320 nm/380–410 nm); our study also shows that fluorescence can be used to evaluate the biological activity both quantitatively and to determine its different phases.  相似文献   
53.
The southern Kermadec-Hikurangi convergent margin, east of New Zealand, accommodates the oblique subduction of the oceanic Hikurangi Plateau at rates of 4–5 cm/yr. Swath bathymetry and sidescan data, together with seismic reflection and geopotential data obtained during the GEODYNZ-SUD cruise, showed major changes in tectonic style along the margin. The changes reflect the size and abundance of seamounts on the subducting plateau, the presence and thickness of trench-fill turbidites, and the change to increasing obliquity and intracontinental transpression towards the south. In this paper, we provide evidence that faulting with a significant strike-slip component is widespread along the entire 1000 km margin. Subduction of the northeastern scrap of the Hikurangi Plateau is marked by an offset in the Kermadec Trench and adjacent margin, and by a major NW-trending tear fault in the scarp. To the south, the southern Kermadec Trench is devoid of turbidite fill and the adjacent margin is characterized by an up to 1200 m high scarp that locally separates apparent clockwise rotated blocks on the upper slope from strike-slip faults and mass wasting on the lower slope. The northern Hikurangi Trough has at least 1 km of trench-fill but its adjacent margin is characterized by tectonic erosion. The toe of the margin is indented by 10–25 km for more than 200 km, and this is inferred to be the result of repeated impacts of the large seamounts that are abundant on the northern Hikurangi Plateau. The two most recent impacts have left major indentations in the margin. The central Hikurangi margin is characterized by development of a wide accretionary wedge on the lower slope, and by transpression of presubduction passive margin sediments on the upper slope. Shortening across the wedge together with a component of strike-slip motion on the upper slope supports an interpretation of some strain partitioning. The southern Hikurangi margin is a narrow, mainly compressive belt along a very oblique, apparently locked subduction zone.  相似文献   
54.
The mineralogy of natural ferromanganese coatings on quartz grains and the crystal chemistry of associated trace elements Ni, Zn, Ba, and As were characterized by X-ray microfluorescence, X-ray diffraction, and EXAFS spectroscopy. Fe is speciated as ferrihydrite and Mn as vernadite. The two oxides form alternating Fe- and Mn-rich layers that are irregularly distributed and not always continuous. Unlike naturally abundant Fe-vernadite, in which Fe and Mn are mixed at the nanoscale, the ferrihydrite and vernadite are physically segregated and the trace elements clearly partitioned at the microscopic scale. Vernadite consists of two populations of interstratified one-water layer (7 Å phyllomanganate) and two-water layer (10 Å phyllomanganate) crystallites. In one population, 7 Å layers dominate, and in the other 10 Å layers dominate. The three trace metals Ni, Zn, and Ba are associated with vernadite and the metalloid As with ferrihydrite. In vernadite, nickel is both substituted isomorphically for Mn in the manganese layer and sorbed at vacant Mn layer sites in the interlayer. The partitioning of Ni is pH-dependent, with a strong preference for the first site at circumneutral pH and for the second at acidic pH. Thus, the site occupancy of Ni in vernadite may be an indicator of marine vs. continental origin, and in the latter, of the acidity of streams, lakes, or soil pore waters in which the vernadite formed. Zinc is sorbed only in the interlayer at vacant Mn layer sites. It is fully tetrahedral at a Zn/Mn molar ratio of 0.0138, and partly octahedral at a Zn/Mn ratio of 0.1036 consistent with experimental studies showing that the VIZn/IVZn ratio increases with Zn loading. Barium is sorbed in a slightly offset position above empty tetrahedral cavities in the interlayer. Arsenic tetrahedra are retained at the ferrihydrite surface by a bidentate-binuclear attachment to two adjacent iron octahedra, as commonly observed. Trace elements in ferromanganese precipitates are partitioned at a few, well-defined, crystallographic sites that have some elemental specificity, and thus selectivity. The relative diversity of sorption sites contrasts with the simplicity of the layer structure of vernadite, in which charge deficit arises only from Mn4+ vacancies (i.e., no Mn3+ for Mn4+ substitution). Therefore, sorption mechanisms primarily depend on physical and chemical properties of the sorbate and competition with other ions in solution, such as protons at low pH for Ni sorption.  相似文献   
55.
 The circulation patterns at Meteor Seamount are investigated for implications for the marine ecosystem, using a numerical ocean circulation model. The importance of tidal amplification and rectification as well as internal tide generation has been documented in Part I of this study. Passive tracers confirm the idea that there is an area above the seamount which is largely isolated from the surroundings. Lagrangian particle trajectories are used to test and quantify the potential for retention. We find that passively advected organisms are more likely to remain in the near-surface layers above Meteor Seamount than actively migrating organisms, which might escape from the area. Finally, the importance of strong wind events on the distribution of particles is illustrated. Received: 10 January 2002 / Accepted: 2 September 2002 Acknowledgements The authors gratefully acknowledge helpful discussions with Catriona Clemmesen, Rabea Diekmann, Frank Hartmann, Inga Hense, Manfred Kaufmann and Bettina Martin. This work was funded by the DFG under contracts Me 487/38-2 and Be 1851/1-1 as part of the Great Meteor Seamount project. Responsible Editor: Jean-Marie Beckers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号