首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2265篇
  免费   48篇
  国内免费   26篇
测绘学   48篇
大气科学   108篇
地球物理   578篇
地质学   771篇
海洋学   239篇
天文学   372篇
综合类   10篇
自然地理   213篇
  2021年   21篇
  2020年   31篇
  2019年   28篇
  2018年   42篇
  2017年   32篇
  2016年   63篇
  2015年   44篇
  2014年   55篇
  2013年   121篇
  2012年   65篇
  2011年   114篇
  2010年   78篇
  2009年   95篇
  2008年   82篇
  2007年   92篇
  2006年   85篇
  2005年   90篇
  2004年   76篇
  2003年   53篇
  2002年   74篇
  2001年   40篇
  2000年   38篇
  1999年   43篇
  1998年   28篇
  1997年   30篇
  1996年   32篇
  1995年   41篇
  1994年   33篇
  1993年   26篇
  1992年   25篇
  1991年   32篇
  1990年   23篇
  1989年   26篇
  1988年   34篇
  1987年   27篇
  1986年   24篇
  1985年   35篇
  1984年   38篇
  1983年   42篇
  1982年   32篇
  1981年   30篇
  1980年   27篇
  1979年   32篇
  1978年   24篇
  1977年   33篇
  1976年   31篇
  1975年   25篇
  1973年   19篇
  1972年   22篇
  1971年   18篇
排序方式: 共有2339条查询结果,搜索用时 15 毫秒
221.
We derive the electron density distribution in the ecliptic plane, from the corona to 1 AU, using observations from 13.8 MHz to a few kHz by the radio experiment WAVES aboard the spacecraft Wind. We concentrate on type III bursts whose trajectories intersect the spacecraft, as determined by the presence of burst-associated Langmuir waves, or by energetic electrons observed by the 3-D Plasma experiment. For these bursts we are able to determine the mode of emission, fundamental or harmonic, the electron density at 1 AU, the distance of emission regions along the spiral, and the time spent by the beams as they proceed from the low corona to 1 AU. For all of the bursts considered, the emission mode at burst onset was the fundamental; by contrast, in deriving many previous models, harmonic emission was assumed.By measuring the onset time of the burst at each frequency we are able to derive an electron density model all along the trajectory of the burst. Our density model, after normalizing the density at 1 AU to be ne(215 R0)=7.2 cm–3 (the average value at the minimum of solar activity when our measurements were made), is ne=3.3×105 r–2+4.1×106 r–4+8.0×107 r–6 cm–3, with r in units of R0. For other densities at 1 AU our result implies that the coefficients in the equation need to be multiplied by n e (1 AU)/7.2.We compare this with existing models and those derived from direct, in-situ measurements (normalized to the same density at 1 AU) and find that it agrees very well with in-situ measurements and poorly with radio models based on apparent source positions or assumptions of the emission mode. One implication of our results is that isolated type III bursts do not usually propagate in dense regions of the corona and solar wind, as it is still sometimes assumed.  相似文献   
222.
Over the past decade the study of Precambrian clastic tidal rhythmites — stacked laminae of sandstone, siltstone and mudstone that display periodic variations in thickness reflecting a strong tidal influence on sedimentation — has provided accurate palaeotidal and palaeorotational data. Palaeotidal records obtained from tidal rhythmites may be systematically abbreviated, however, and derived periods and frequencies can be misleading. The validity of such values, including past length of day, can be assessed by testing for internal self-consistency through application of the laws of celestial mechanics. Such a test supports the estimated length of day of h derived from the late Neoproterozoic (620 Ma) Elatina–Reynella rhythmites in South Australia, and the indicated mean rate of lunar retreat of cm/year since 620 Ma. The validity of estimated lengths of day obtained from other Precambrian tidal rhythmites remain unverified because the data sets contain only one primary value directly determined from the rhythmites. The Elatina–Reynella data militate against significant Earth expansion at least since 620 Ma, and suggest that the free nutation or ‘tipping' of the Earth's fluid core has undergone a resonance with the Earth's annual forced nutation since the Neoproterozoic. Glaciogenic deposits are readily distinguishable from ejecta resulting from impacts with Earth-crossing bodies. Palaeomagnetic data, based on the geocentric axial dipole model for the geomagnetic field, indicate that Neoproterozoic and Palaeoproterozoic glaciation and cold climate near sea level occurred in low palaeolatitudes. This enigmatic finding may imply global glaciation or an increased obliquity of the ecliptic, and is relevant to modelling the effect of ice sheet formation on the Earth's obliquity history by obliquity–oblateness feedback mechanisms. Through multidisciplinary studies, clastic sedimentology and geophysics together can make substantial contributions to understanding Precambrian Earth–Moon dynamics and global palaeoenvironments.  相似文献   
223.
The gravitational stability of the air overlying the sea surface is determined by the air-sea temperature difference. Air-sea exchange coeeficients have been shown to increase when the air is unstable and decrease when the air is stable. This stability dependence of the wind stress has been approximated by a linear law relating wind stress to air-sea temperature difference and it has been shown that this thermal feedback generates a warm, Gulf-Stream-like jet emerging from the western boundary current eastward into the interior. Here, the thermal correction is applied tot he wind stress and to the air-sea heat exchange coefficient to study the effects on the circulation and on the poleward heat flux. The basic dynamical model is linear, wind-driven and has an anticyclonic gyre in the southern half and an equally intense cyclonic half in the northern half basin. The thermodynamic model uses the vertically averaged, convective-diffusive heat equation. Thermal feedback leads to a compression of the anticyclonic gyre to a narrower lattitude band near the western boundary and to a warm Gulf Stream extending eastward into the interior. The redistribution of the dynamical properties in the anticyclonic gyre resembles that due to inertial processes. In the cyclonic gyre the changes are quite unlike those due to inertial effects. The main quantitative change is the poleward heat flux across the gyre boundary, which can be several times the value obtained without feedback and should be important for climate studies.  相似文献   
224.
The role of barotropic processes in the development of a monsoon depression, formed on 5 July 1979 during MONEX observational period, is studied by considering it as a quasi-geostrophic divergent barotropic instability problem of zonal flow of 3 July 1979 at 700 mb level. Numerical solutions are obtained by initial value approach. The preferred wave has a wavelength of 2750 km, an e-folding time of 4.3 days, a period of 6.5 days and an eastward phase speed of 4.9 ms–1. Structure of preferred wave is found to be in good agreement with the observed horizontal structure of the depression at 700 mb. Poleward momentum transports are found to predominate over equatorward transports.Parts of this paper were presented at the National Symposium on Early Results of MONEX-1979. 9–12 March 1981, in New Delhi, India.  相似文献   
225.
A multiple regression model was constructed for the purpose of predicting barrier island hydrology from easily measureable island characteristics. The model was developed using data obtained from 17 sites on the Outer Banks of North Carolina. The accuracy of the model for predicting key hydrologic variables was evaluated by statistical and graphic procedures. In general, agreement between observed and predicted values of the hydrologic variables was very good, suggesting that the quantity of potable water at various island sites can be estimated without resorting to extensive field investigations. The model was then applied to Assateague Island, a barrier island located off the coasts of Maryland and Virginia. Results indicate that the original model developed for the Outer Banks may be applied to other barrier islands but that errors involved may necessitate corrections in detailed studies. Correction for bias in predictions for Assateague was shown to be possible with limited field data from surface resistivity surveys.  相似文献   
226.
227.
Total mercury was estimated in liver, gonads and muscle of some of the marine fishes from the Indian Ocean. The highest mercury concentration was observed in the muscle of sharks while the total mercury concentration was practically non-detectable in the liver and gonads. The range of all the values was 0.09–0.21 ppm (wet weight basis) and is quite low to reflect any possible mercury contamination.  相似文献   
228.
Unpolarized absorption spectra of single crystals of Cr3+ doped Al2O3 (synthetic ruby) have measured using a new, time-resolving, dispersive, streak photographic system over the range ~350 to ~700 nm during a series of shock loading experiments. The crystal field absorptions assigned to the transition 4 A 2g4 T 2g were observed to shift in a series of experiments from 555±1 nm at atmospheric pressure to 503±5 nm at 46 GPa. In a single experiment at 32 GPa the 4 A 2g4 T 1g transition was observed to shift from 405±1 to 386±5 nm. The present data extrapolate downwards in compression toward the 10 GPa data of Stephens and Drickamer (1961) although both crystal field absorption energies increase considerably less with compression than predicted by the simple ionic point charge model. The single datum observed for the Racah parameter B, 588±38 cm?1 at 32 GPa, is consistant with previous results to 10 GPa and the trend of decreasing B, with compression expected from the divergence of the data from the point charge model due to increasing covalancy.  相似文献   
229.
230.
Calculations of the radial distribution of the energy released in core formation indicate that the cores of all the terrestrial planets may be expected to receive a disproportionate share of the gravitational energy released. Since the model of the process used in these calculations favors transfer of energy to the mantle, it is likely that other reasonable models of the process will result in even more energy being deposited in the cores of the early planets. The calculations also show that it is necessary for a certain amount of core phase to separate and accumulate, before the energy released by gravitational settling is sufficient to supply the latent heat of fusion of the core phase. The amount of melting required to reach this point varies according to the total mass of the planet, and mass fraction of core, but is not particularly great (<5% for the Earth to ~ 37% for the Moon). In the case of the Moon, this amount of segregation, although large, amounts to a surface layer about 260 km thick, similar to the proposed depth of early wholesale melting. Core separation in terrestrial planets appears to be a self-sustaining process even for fairly small bodies, provided that a small amount of a dense potential core phase is present. Although it seems likely to occur rapidly (within 106–107 years) even for small (Moon-size) bodies, detailed kinetic models will be necessary to specify the time scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号