首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   52篇
  国内免费   6篇
测绘学   19篇
大气科学   104篇
地球物理   218篇
地质学   311篇
海洋学   56篇
天文学   128篇
自然地理   100篇
  2023年   2篇
  2021年   13篇
  2020年   13篇
  2019年   7篇
  2018年   23篇
  2017年   32篇
  2016年   33篇
  2015年   27篇
  2014年   27篇
  2013年   52篇
  2012年   35篇
  2011年   47篇
  2010年   41篇
  2009年   42篇
  2008年   51篇
  2007年   33篇
  2006年   41篇
  2005年   34篇
  2004年   28篇
  2003年   35篇
  2002年   31篇
  2001年   23篇
  2000年   22篇
  1999年   14篇
  1998年   14篇
  1997年   12篇
  1996年   20篇
  1995年   22篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   9篇
  1990年   5篇
  1989年   6篇
  1988年   13篇
  1987年   7篇
  1986年   5篇
  1985年   13篇
  1984年   4篇
  1983年   7篇
  1982年   8篇
  1981年   8篇
  1980年   10篇
  1979年   7篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1974年   7篇
  1971年   2篇
  1915年   5篇
排序方式: 共有936条查询结果,搜索用时 31 毫秒
31.
土城子组/后城组为广泛分布在中国北方的燕山褶皱冲断带和盆地中晚侏罗世的典型碎屑岩沉积。本文主要是针对目前在燕山地区的通行的有关土城子组/后城组、及其之下的髫髻山组/蓝旗组,和上覆的张家口组/东岭台组火山岩的相关对比方法提出质疑。其他同行近期发表相关的氩-氩法和铀-铅法同位素测年数据指出髫髻山组/蓝旗组年龄为175~147Ma、土城子组/后城组年龄为156~139Ma、张家口组/东岭台组年龄为147~127Ma,显而易见,上述地层组的年龄是相互重叠的。这些测年数据说明以往的地层对比是有问题的,燕山造山带在中、晚侏罗世所发育的火山岩和沉积岩地层是穿时的。因此,传统上用(165±5)Ma和(135±5)Ma之间的区域不整合来作为划分髫髻山组和后城组的层序界限是值得商榷的。尽管一些髫髻山组的火山岩和土城子组/后城组的沉积岩是与向南或向北的冲断作用相伴生的,但在髫髻山组和土城子组/后城组沉积之间的30~35Ma的时间间隔内却是相对的构造平静期。这一结论是基于以往的髫髻山组和土城子组之间为假整合或平行不整合的观点所得出的。新近基于对承德盆地土城子组地层形成研究分析认为承德冲断层的实际位移距离应小于Davis等2001年所提出的位移距离,笔者接受这一观点。但笔者并不同意在承德地区土城子组的沉积主要是受控于承德北部的向南冲断作用。现今承德向形盆地主要是由于向北冲断的承德县冲断层下盘变形的结果,主要是(1)它向北发生倒转;(2)盆地南部的粗碎屑沉积的物源主要是来源于承德县的异地体。土城子组/后城组的沉积没有必要完全受控于构造作用。土城子组/后城组的沉积是紧随着在燕山部分地区发生的,持续了20~25Ma的髫髻山组/蓝旗组火山及岩浆活动。在中、晚侏罗世期间,燕山地区的岩浆活动必定导致地形的起伏,这就为快速剥蚀及粗碎屑的沉积提供了有利条件。最后需要指出的是,从前所提及的有关燕山带的土城子组/后城组和阴山带的大青山组的地层对比的依据并不存在。  相似文献   
32.
Continental rift systems and anorogenic magmatism   总被引:1,自引:0,他引:1  
Precambrian Laurentia and Mesozoic Gondwana both rifted along geometric patterns that closely approximate truncated-icosahedral tessellations of the lithosphere. These large-scale, quasi-hexagonal rift patterns manifest a least-work configuration. For both Laurentia and Gondwana, continental rifting coincided with drift stagnation, and may have been driven by lithospheric extension above an insulated and thermally expanded mantle. Anorogenic magmatism, including flood basalts, dike swarms, anorthosite massifs and granite-rhyolite provinces, originated along the Laurentian and Gondwanan rift tessellations. Long-lived volcanic regions of the Atlantic and Indian Oceans, sometimes called hotspots, originated near triple junctions of the Gondwanan tessellation as the supercontinent broke apart. We suggest that some anorogenic magmatism results from decompression melting of asthenosphere beneath opening fractures, rather than from random impingement of hypothetical deep-mantle plumes.  相似文献   
33.
Large, correlated, mass-dependent enrichments in the heavier isotopes of O, Cr, Fe, and Ni are observed in type-I (metal/metal oxide) cosmic spherules collected from the deep sea. Limited intraparticle variability of oxygen isotope abundances, typically <5‰ in δ18O, indicates good mixing of the melts and supports the application of the Rayleigh equation for the calculation of fractional evaporative losses during atmospheric entry. Fractional losses for oxygen evaporation from wüstite, assuming a starting isotopic composition equal to that of air (δ18O = 23.5‰; δ17O = 11.8‰), are in the range 55%-77%, and are systematically smaller than evaporative losses calculated for Fe (69%-85%), Cr (81%-95%), and especially Ni (45%-99%). However, as δ18O values increase, fractional losses for oxygen approach those of Fe, Cr, and Ni indicating a shift in the evaporating species from metallic to oxidized forms as the spherules are progressively oxidized during entry heating. The observed unequal fractional losses of O and Fe can be reconciled by allowing for a kinetic isotope mass-dependent fractionation of atmospheric oxygen during the oxidation process and/or that some metallic Fe may have undergone Rayleigh evaporation before oxidation began.In situ measurements of oxygen isotopic abundances were also performed in 14 type-S (silicate) cosmic spherules, 13 from the Antarctic ice and one from the deep sea. Additional bulk Fe and Cr isotopic abundances were determined for two type-S deep-sea spherules. The isotopic fractionation of Cr isotopes suggest appreciable evaporative loss of Cr, perhaps as a sulfide. The oxygen isotopic compositions for the type-S spherules range from δ18O = −2‰ to + 27‰. The intraspherule isotopic variations are typically small, ∼5% relative, except for the less-heated porphyritic spherules which have preserved large isotopic heterogeneities in at least one case. A plot of δ17O vs. δ18O values for these spherules defines a broad parallelogram bounded at higher values of δ17O by the terrestrial fractionation line, and at lower values of δ17O by a line parallel to it and anchored near the isotopic composition of δ18O = −2.5‰ and δ17O = −5‰. Lack of independent evidence for substantial evaporative losses suggests that much of this variation reflects the starting isotopic composition of the precursor materials, which likely resembled CO, CM, or CI chondrites. However, the enrichments in heavy isotopes indicate that some mixing with atmospheric oxygen was probably involved during atmospheric entry for some of the spherules. Isotopic fractionation due to evaporation of incoming grain is not required to explain most of the oxygen isotopic data for type-S spherules. However spherules with barred olivine textures that are thought to have experienced a more intense heating than the porphyritic ones might have undergone some distillation. Two cosmic spherules, one classified as a radial pyroxene type and the other showing a glassy texture, show unfractionated oxygen isotopic abundances. They are probably chondrule fragments that survived atmospheric entry unmelted.Possible reasons type-I spherules show larger degrees of isotopic fractionation than type-S spherules include: a) the short duration of the heating pulse associated with the high volatile content of the type-S spherule precursors compared to type-I spherules; b) higher evaporation temperatures for at least a refractory portion of the silicates compared to that of iron metal or oxide; c) lower duration of heating of type-S spherules compared to type-I spherules as a consequence of their lower densities.  相似文献   
34.
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in the baseflow fraction of streamflow, assessing whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate baseflow discharge and baseflow dissolved solids loads at stream gages (n = 69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow, indicating that subsurface transport processes play a dominant role in delivering dissolved solids to streams in the UCRB. A statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams (n = 27) from 1986 to 2011. Decreasing trends in baseflow dissolved solids loads were observed at 63% of streams. At the three most downstream sites, Green River at Green River, UT, Colorado River at Cisco, UT, and the San Juan River near Bluff, UT, baseflow dissolved solids loads decreased by a combined 823,000 metric tons (mT), which is approximately 69% of projected basin‐scale decreases in total dissolved solids loads as a result of salinity control efforts. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, landscape changes, and/or climate are reducing dissolved solids transported to streams through the subsurface. Notably, the pace and extent of decreases in baseflow dissolved solids loads declined during the most recent decade; average decreasing loads during the 2000s (28,200 mT) were only 54% of average decreasing loads in the 1990s (51,700 mT).  相似文献   
35.
The abundances of highly siderophile elements (HSE; including Re, Os, Ir, Ru, Pt, and Pd) and 187Re‐187Os isotopic systematics were determined for two fragments from ungrouped achondrite NWA 7325. Rhenium‐Os systematics are consistent with closed‐system behavior since formation or soon after. The abundances of the HSE were therefore largely unaffected by late‐stage secondary processes such as shock or terrestrial weathering. As an olivine gabbro cumulate, this meteorite has a bulk composition consistent with derivation from a body that produced a core, mantle, and crust. Also consistent with derivation from a body that produced a core, both fragments of NWA 7325 have HSE abundances that are highly depleted compared to bulk chondrites. One fragment has ~0.002× CI chondrite Ir and relative HSE abundances similar to bulk chondrites. The other fragment has ~0.0002× CI chondrite Ir and relative HSE abundances that are fractionated compared to bulk chondrites. The chondritic relative HSE abundances of the fragment characterized by higher HSE abundances most likely reflect the addition of exogenous chondritic material during or after crystallization by surface impacts. The HSE in the other fragment is likely more representative of the parent body crust. One formation model that can broadly account for the HSE abundances in this fragment is multiple episodes of low‐pressure metal‐silicate equilibration, followed by limited late accretion and mantle homogenization. Given the different HSE compositions of the two adjoining fragments, this meteorite provides an example of the overprint of global processes (differentiation and late accretion) by localized impact contamination.  相似文献   
36.
A key to understanding Late Pleistocene megafaunal extinction dynamics is knowledge of megafaunal ecological response(s) to long-term environmental perturbations. Strategically, that requires targeting fossil deposits that accumulated during glacial and interglacial intervals both before and after human arrival, with subsequent palaeoecological models underpinned by robust and reliable chronologies. Late Pleistocene vertebrate fossil localities from the Darling Downs, eastern Australia, provide stratigraphically-intact, abundant megafaunal sequences, which allows for testing of anthropogenic versus climate change megafauna extinction hypotheses. Each stratigraphic unit at site QML796, Kings Creek Catchment, was previously shown to have had similar sampling potential, and the basal units contain both small-sized taxa (e.g., land snails, frogs, bandicoots, rodents) and megafauna. Importantly, sequential faunal horizons show stepwise decrease in taxonomic diversity with the loss of some, but not all, megafauna in the geographically-small palaeocatchment. The purpose of this paper is to present the results of our intensive, multidisciplinary dating study of the deposits (>40 dates). Dating by means of accelerator mass spectrometry (AMS) 14C (targeting bone, freshwater molluscs, and charcoal) and thermal ionisation mass spectrometry U/Th (targeting teeth and freshwater molluscs) do not agree with each other and, in the case of AMS 14C dating, lack internal consistency. Scanning electron microscopy and rare earth element analyses demonstrate that the dated molluscs are diagenetically altered and contain aragonite cements that incorporated secondary young C, suggesting that such dates should be regarded as minimum ages. AMS 14C dated charcoals provide ages that occur out of stratigraphic order, and cluster in the upper chronological limits of the technique (~40–48 ka). Again, we suggest that such results should be regarded as suspicious and only minimum ages. Subsequent OSL and U/Th (teeth) dating provide complimentary results and demonstrate that the faunal sequences actually span ~120–83 ka, thus occurring beyond the AMS 14C dating window. Importantly, the dates suggest that the local decline in biological diversity was initiated ~75,000 years before the colonisation of humans on the continent. Collectively, the data are most parsimoniously consistent with a pre-human climate change model for local habitat change and megafauna extinction, but not with a nearly simultaneous extinction of megafauna as required by the human-induced blitzkrieg extinction hypothesis. This study demonstrates the problems inherent in dating deposits that lie near the chronological limits of the radiocarbon dating technique, and highlights the need to cross-check previously-dated archaeological and megafauna deposits within the timeframe of earliest human colonisation and latest megafaunal survival.  相似文献   
37.
A sequence of shallow reef cores from Heron Reef, Great Barrier Reef, provides new insights into Holocene reef growth models. Isochron analysis of a leeward core transect suggests that the north‐western end of Heron Reef reached current sea‐level by ca 6·5 kyr bp and then prograded leeward at a rate of ca 19·6 m/kyr between 5·1 kyr and 4·1 kyr bp (pre‐1950) to the present reef margin. A single short core on the opposing margin of the reef is consistent with greater and more recent progradation there. Further to the east, one windward core reached modern sea‐level by ca 6·3 kyr bp , suggesting near ‘keep‐up’ behaviour at that location, but the opposing leeward margin behind the lagoon reached sea‐level much more recently. Hence, Heron Reef exhibited significantly different reef growth behaviour on different parts of the same margin. Mean reef accretion rates calculated from within 20 m of one another in the leeward core transect varied between ca 2·9 m and 4·7 m/kyr depending on relative position in the prograding wedge. These cores serve as a warning regarding the use of isolated cores to inform reef growth rates because apparent aggradation at any given location on a reef varies depending on its location relative to a prograding margin. Only transects of closely spaced cores can document reef behaviour adequately so as to inform reef growth models and sea‐level curves. The cores also emphasize potential problems in U‐series dates for corals within a shallow (ca 1·5 m) zone beneath the reef flat. Apparent age inversions restricted to that active diagenetic zone may reflect remobilization and concentration of Th in irregularly distributed microbialites or biofilms that were missed during sample vetting. Importantly, the Th‐containing contaminant causes ages to appear too old, rather than too young, as would be expected from younger cement.  相似文献   
38.
The alluvial architecture of fine‐grained (silt‐bed) meandering rivers remains poorly understood in comparison to the extensive study given to sand‐bed and gravel‐bed channels. This paucity of knowledge stems, in part, from the difficulty of studying such modern rivers and deriving analogue information from which to inform facies models for ancient sediments. This paper employs a new technique, the parametric echosounder, to quantify the subsurface structure of the Río Bermejo, Argentina, which is a predominantly silt‐bed river with a large suspended sediment load. These results show that the parametric echosounder can provide high‐resolution (decimetre) subsurface imaging from fine‐grained rivers that is equivalent to the more commonly used ground‐penetrating radar that has been shown to work well in coarser‐grained rivers. Analysis of the data reveals that the alluvial architecture of the Río Bermejo is characterized by large‐scale inclined heterolithic stratification generated by point‐bar evolution, and associated large‐scale scour surfaces that result from channel migration. The small‐scale and medium‐scale structure of the sedimentary architecture is generated by vertical accretion deposits, bed sets associated with small bars, dunes and climbing ripples and the cut and fill from small cross‐bar channels. This style of alluvial architecture is very different from other modern fine‐grained rivers reported in the literature that emphasize the presence of oblique accretion. The Río Bermejo differs from these other rivers because it is much more active, with very high rates of bank erosion and channel migration. Modern examples of this type of highly active fine‐grained river have been reported rarely in the literature, although ancient examples are more prevalent and show similarities with the alluvial architecture of the Río Bermejo, which thus represents a useful analogue for their identification and interpretation. Although the full spectrum of the sedimentology of fine‐grained rivers has yet to be revealed, meandering rivers dominated by lateral or oblique accretion probably represent end members of such channels, with the specific style of sedimentation being controlled by grain size and sediment load characteristics.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号