首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22838篇
  免费   4120篇
  国内免费   5203篇
测绘学   1382篇
大气科学   4653篇
地球物理   6418篇
地质学   10861篇
海洋学   3022篇
天文学   896篇
综合类   2271篇
自然地理   2658篇
  2024年   85篇
  2023年   345篇
  2022年   932篇
  2021年   1078篇
  2020年   853篇
  2019年   1004篇
  2018年   1152篇
  2017年   1090篇
  2016年   1243篇
  2015年   1032篇
  2014年   1193篇
  2013年   1347篇
  2012年   1186篇
  2011年   1226篇
  2010年   1302篇
  2009年   1238篇
  2008年   1050篇
  2007年   1116篇
  2006年   841篇
  2005年   829篇
  2004年   631篇
  2003年   686篇
  2002年   733篇
  2001年   750篇
  2000年   846篇
  1999年   1150篇
  1998年   959篇
  1997年   933篇
  1996年   874篇
  1995年   788篇
  1994年   706篇
  1993年   601篇
  1992年   507篇
  1991年   357篇
  1990年   278篇
  1989年   235篇
  1988年   219篇
  1987年   131篇
  1986年   122篇
  1985年   86篇
  1984年   70篇
  1983年   72篇
  1982年   64篇
  1981年   49篇
  1980年   45篇
  1979年   37篇
  1978年   19篇
  1977年   11篇
  1974年   9篇
  1958年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
995.
996.
997.
Based on the dynamic framework of WRF and Morrison 2-moment explicit cloud scheme, a salt-seeding scheme was developed and used to simulate the dissipation of a warm fog event during 6–7 November 2009 in the Beijing and Tianjin area. The seeding effect and its physical mechanism were studied. The results indicate that when seeding fog with salt particles sized 80 μm and at a quantity of 6 gm~(-2) at the fog top, the seeding effect near the ground surface layer is negative in the beginning period, and then a positive seeding effect begins to appear at 18 min, with the best effect appearing at 21 min after seeding operation. The positive effect can last about 35 min. The microphysical mechanism of the warm fog dissipation is because of the evaporation due to the water vapor condensation on the salt particles and coalescence with salt particles.The process of fog water coalescence with salt particles contributed mostly to this warm fog dissipation. Furthermore, two series of sensitivity experiments were performed to study the seeding effect under different seeding amounts and salt particles sizes. The results show that seeding fog with salt particles sized of 80 μm can have the best seeding effect, and the seeding effect is negative when the salt particle size is less than 10 μm. For salt particles sized 80 μm, the best seeding effect, with corresponding visibility of 380 m, can be achieved when the seeding amount is 30 g m~(-2).  相似文献   
998.
A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin(YRB) during July11–13 2000 is explored in this study. The potential/stream function is used to analyze the upstream "strong signals" of the water vapor transport in the Tibetan Plateau(TP). The studied time period covers from 2000 LST 5 July to 2000 LST 15 July(temporal resolution: 6 hours). By analyzing the three-dimensional structure of the water vapor flux, vorticity and divergence prior to and during the heavy rainfall event, the upstream "strong signals" related to this heavy rainfall event are revealed. A strong correlation exists between the heavy rainfall event in the YRB and the convective clouds over the TP. The "convergence zone" of the water vapor transport is also identified, based on correlation analysis of the water vapor flux two days and one day prior to, and on the day of, the heavy rainfall. And this "convergence zone" coincides with the migration of the maximum rainfall over the YRB. This specific coupled structure actually plays a key role in generating heavy rainfall over the YRB. The eastward movement of the coupled system with a divergence/convergence center of the potential function at the upper/lower level resembles the spatiotemporal evolution of the heavy rainfall event over the YRB. These upstream "strong signals" are clearly traced in this study through analyzing the three-dimensional structure of the potential/stream function of upstream water vapor transport.  相似文献   
999.
Trends in precipitation are critical to water resources. Considerable uncertainty remains concerning the trends of regional precipitation in response to global warming and their controlling mechanisms. Here, we use an interannual difference method to derive trends of regional precipitation from GPCP(Global Precipitation Climatology Project) data and MERRA(ModernEra Retrospective Analysis for Research and Applications) reanalysis in the near-global domain of 60?S–60?N during a major global warming period of 1979–2013. We find that trends of regional annual precipitation are primarily driven by changes in the top 30% heavy precipitation events, which in turn are controlled by changes in precipitable water in response to global warming, i.e., by thermodynamic processes. Significant drying trends are found in most parts of the U.S. and eastern Canada,the Middle East, and eastern South America, while significant increases in precipitation occur in northern Australia, southern Africa, western India and western China. In addition, as the climate warms there are extensive enhancements and expansions of the three major tropical precipitation centers–the Maritime Continent, Central America, and tropical Africa–leading to the observed widening of Hadley cells and a significant strengthening of the global hydrological cycle.  相似文献   
1000.
Based on observational precipitation at 63 stations in South China and NCEP NCAR reanalysis data during 1951 2010,a cluster analysis is performed to classify large-scale circulation patterns responsible for persistent precipitation extremes(PPEs) that are independent of the influence of tropical cyclones(TCs).Conceptual schematics depicting configurations among planetary-scale systems at different levels are established for each type.The PPEs free from TCs account for 38.6%of total events,and they tend to occur during April August and October,with the highest frequency observed in June.Corresponding circulation patterns during June August can be mainly categorized into two types,i.e.,summer-Ⅰ type and summer-Ⅱtype.In summer-Ⅰ type,the South Asian high takes the form of a zonal-belt type.The axis of upstream westerly jets is northwest-oriented.At the middle level,the westerly jets at midlatitudes extend zonally.Along the southern edge of the westerly jet,synoptic eddies steer cold air to penetrate southward;the Bay of Bengal(BOB) trough is located to the north;a shallow trough resides over coastal areas of western South China;and an intensified western Pacific subtropical high(WPSH) extends westward.The anomalous moisture is mainly contributed by horizontal advection via southwesterlies around 20°N and southeasterlies from the southern flange of the WPSH.Moisture convergence maximizes in coastal regions of eastern South China,which is the very place recording extreme precipitation.In summer-Ⅱ type,the South Asian high behaves as a western-center type.The BOB trough is much deeper,accompanied by a cyclone to its north;and a lower-level trough appears in northwestern parts of South China.Different to summer-Ⅰ type,moisture transport via southwesterlies is mostly responsible for the anomalous moisture in this type.The moisture convergence zones cover Guangdong,Guangxi,and Hainan,matching well with the areas of flooding.It is these set combinations among different systems at different levels that trigger PPEs in South China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号