首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   21篇
  国内免费   2篇
测绘学   11篇
大气科学   23篇
地球物理   91篇
地质学   126篇
海洋学   27篇
天文学   70篇
综合类   3篇
自然地理   53篇
  2021年   3篇
  2020年   6篇
  2019年   11篇
  2018年   11篇
  2017年   2篇
  2016年   14篇
  2015年   10篇
  2014年   9篇
  2013年   19篇
  2012年   7篇
  2011年   23篇
  2010年   19篇
  2009年   22篇
  2008年   20篇
  2007年   15篇
  2006年   22篇
  2005年   10篇
  2004年   12篇
  2003年   19篇
  2002年   13篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   8篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1980年   9篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1975年   3篇
  1974年   4篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
排序方式: 共有404条查询结果,搜索用时 31 毫秒
31.
Summary. Rotational remanent magnetization, RRM, is the magnetization acquired when a sample is rotated during alternating field demagnetization. Although the existence of RRM has been well documented in different laboratories, until now no physical mechanism explaining its origin has been given. We propose that the RRM originates from thermal fluctuations biased by a precessional torque associated with the alternating field. Our theory is consistent with the observation that no directional preference exists in the experimental situation until the sample is rotated relative to the alternating field. Moreover, our theory predicts that the combined sample rotation and precession will produce a RRM that switches direction when the frequency of sample rotation increases from any value below the frequency of the alternating field to any value above that frequency as observed in experiments. Although no precise theory is given for the intensity of RRM, the model presented here can qualitatively explain previous intensity observations.  相似文献   
32.
The completeness and the accuracy of the Brest sea level time series dating from 1807 make it suitable for long-term sea level trend studies. New data sets were recently discovered in the form of handwritten tabulations, including several decades of the eighteenth century. Sea level observations have been made in Brest since 1679. This paper presents the historical data sets which have been assembled so far. These data sets span approximately 300 years and together constitute the longest, near-continuous set of sea level information in France. However, an important question arises: Can we relate the past and the present-day records? We partially provide an answer to this question by analysing the documents of several historical libraries with the tidal data using a ‘data archaeology’ approach advocated by Woodworth (Geophys Res Lett 26:1589–1592, 1999b). A second question arises concerning the accuracy of such records. Careful editing was undertaken by examining the residuals between tidal predictions and observations. It proved useful to remove the worst effects of timing errors, in particular the sundial correction to be applied prior to August 1, 1714. A refined correction based on sundial literature [Savoie, La gnomique, Editions Les Belles Lettres, Paris, 2001] is proposed, which eliminates the systematic offsets seen in the discrepancies in timing of the sea level measurements. The tidal analysis has also shown that shallow-water tidal harmonics at Brest causes a systematic difference of 0.023 m between mean sea level (MSL) and mean tide level (MTL). Thus, MTL should not be mixed with the time series of MSL because of this systematic offset. The study of the trends in MTL and MSL however indicates that MTL can be used as a proxy for MSL. Three linear trend periods are distinguished in the Brest MTL time series over the period 1807–2004. Our results support the recent findings of Holgate and Woodworth (Geophys Res Lett) of an enhanced coastal sea level rise during the last decade compared to the global estimations of about 1.8 mm/year over longer periods (Douglas, J Geophys Res 96:6981–6992, 1991). The onset of the relatively large global sea level trends observed in the twentieth century is an important question in the science of climate change. Our findings point out to an ‘inflexion point’ at around 1890, which is remarkably close to that in 1880 found in the Liverpool record by Woodworth (Geophys Res Lett 26:1589–1592, 1999b).  相似文献   
33.
Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity.

Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally < 25 cm thick, extend hundreds of meters inland from the beach, and fill microtopography but generally conform to the antecedent landscape. They commonly are a single homogeneous bed that is normally graded overall, or that consists of only a few thin layers. Mud intraclasts and mud laminae within the deposit are strong evidence of tsunami deposition. Twig orientation or other indicators of return flow during bed aggradation are also diagnostic of tsunami deposits. Sandy storm deposits tend to be > 30 cm thick, generally extend < 300 m from the beach, and will not advance beyond the antecedent macrotopography they are able to fill. They typically are composed of numerous subhorizontal planar laminae organized into multiple laminasets that are normally or inversely graded, they do not contain internal mud laminae and rarely contain mud intraclasts. Application of these distinguishing characteristics depends on their preservation potential and any deposit modifications that accompany burial.

The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly < 3 m, sediment is transported primarily as bed load by traction, and the load is deposited within a zone relatively close to the beach.  相似文献   

34.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   
35.
In this paper we investigate the dynamical behaviour of radiation-driven winds, specifically winds that arise when Compton scattering transfers momentum from the radiation field to the gas flow. Such winds occur during strong X-ray bursts from slowly accreting neutron stars, and also may be driven from the inner regions of a black hole or neutron star accretion disc when the mass transfer rate is very high. By linearizing the radiation hydrodynamic equations around steady spherical outflow, we evaluate the time-dependent response of these winds to perturbations introduced at their inner boundaries. We find that although radiation-driven winds are generally stable, they act as mechanical filters that should produce quasi-periodic oscillations or peaked noise in their radiation output when perturbations force them stochastically. This behaviour may underlie the photospheric oscillations observed in some strong Type I X-ray bursts.  相似文献   
36.
River discharge is currently monitored by a diminishing network of gauges, which provide a spatially incomplete picture of global discharges. This study assimilated water level information derived from a fused satellite Synthetic Aperture Radar (SAR) image and digital terrain model (DTM) with simulations from a coupled hydrological and hydrodynamic model to estimate discharge in an un‐gauged basin scenario. Assimilating water level measurements led to a 79% reduction in ensemble discharge uncertainty over the coupled hydrological hydrodynamic model alone. Measurement bias was evident, but the method still provided a means of improving estimates of discharge for high flows. The study demonstrates the potential of currently available synthetic aperture radar imagery to reduce discharge uncertainty in un‐gauged basins when combined with model simulations in a data assimilation framework, where sufficient topographic data are available. The work is timely because in the near future the launch of satellite radar missions will lead to a significant increase in the volume of data available for space‐borne discharge estimation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
37.
This paper presents a procedure for the determination of parameters of non‐local damage models. This is to assure a consistent response of a non‐local damage model, as choice of the internal length and other parameters of the model are varied. Correlations between the internal length and other parameters governing the local constitutive behaviour of the model are addressed and exploited. Focus is put on the relationship between the internal length of the non‐local model and the width of the fracture process zone. Numerical examples are used to demonstrate the rigour of the proposed method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
38.
Although it is traditionally thought that drainage basins are geometrically similar, we present new results which indicate that the aspect ratio of weakly dissected river basins at large scales (10–103 km2) depends on the surface slope: steeper surfaces develop narrower and lengthier basins whereas more gently dipping surfaces develop more equant and wider basins. This relationship is interpreted to be related to the nature of water flow over rough surfaces, with steeper slopes causing less flow convergence and lengthier and narrower basins. We derive an empirical relationship that can be used to infer the slope of a surface on which a river basin acquired its geometry based solely on a measure of its basin form. This relation provides a unique means of inferring the relative chronology of river basin development with respect to surface tilting and therefore provides a direct link between river basin morphology and tectonics.  相似文献   
39.
Density,porosity, and magnetic susceptibility of carbonaceous chondrites   总被引:1,自引:0,他引:1  
Abstract– We report physical properties (bulk and grain density, magnetic susceptibility, and porosity) measured using nondestructive and noncontaminating methods for 195 stones from 63 carbonaceous chondrites. Grain densities over the whole population average 3.44 g cm?3, ranging from 2.42 g cm?3 (CI1 Orgueil) to 5.66 g cm?3 (CB Bencubbin). Magnetic susceptibilities (in log units of 10?9 m3 kg?1) averaged log χ = 4.22, ranging from 3.23 (CV3 Axtell) to 5.79 (CB Bencubbin). Porosities averaged 17%, ranging from 0 (for a number of meteorites) to 41% (for one stone of the CO Ornans). Notably, we found significant differences in porosity between the oxidized and reduced CV subgroups, with the porosities of CVo averaging approximately 20% and CVr porosities approximately 4%. Overall, porosities of carbonaceous chondrite falls trend with petrographic type, from type 1 (CI) near 35%, type 2 (CM, CR) averaging 23%, type 3 (CV, CO) 21%, to type 4 (CK and some CO) averaging 15%. There is also a significant decrease in porosity between meteorites of shock stage S1 and those of S2, indicative of shock compression.  相似文献   
40.
Multiphase flow modelling is a major issue in the assessment of groundwater pollution. Three-phase flows are commonly governed by mathematical models that associate a pressure equation with two saturation equations. These equations involve a number of secondary variables that reflect the fluid behaviour in a porous medium. To improve the computational efficiency of multiphase flow simulators, several simplified reformulations of three-phase flow equations have been proposed. However, they require the construction of new secondary variables adapted to the reformulated flow equations. In this article, two different approaches are compared to quantify these variables. A numerical example is given for a typical fine sand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号