首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   21篇
  国内免费   2篇
测绘学   11篇
大气科学   23篇
地球物理   91篇
地质学   126篇
海洋学   27篇
天文学   69篇
综合类   3篇
自然地理   53篇
  2021年   3篇
  2020年   6篇
  2019年   11篇
  2018年   11篇
  2017年   2篇
  2016年   14篇
  2015年   10篇
  2014年   9篇
  2013年   19篇
  2012年   7篇
  2011年   23篇
  2010年   19篇
  2009年   22篇
  2008年   20篇
  2007年   15篇
  2006年   22篇
  2005年   10篇
  2004年   12篇
  2003年   19篇
  2002年   13篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   8篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1980年   9篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1975年   3篇
  1974年   4篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
排序方式: 共有403条查询结果,搜索用时 156 毫秒
401.
We have studied the impact of the bioturbating macrofauna, in particular the lugworm Arenicola marina and the bivalve Cerastoderma edule, on abundances and distribution patterns of total bacteria and of bacteria of selected functional groups in sandy intertidal sediments. The selected groups comprised the colourless sulphur-oxidising bacteria and the anoxygenic phototrophic bacteria, which are expected to occupy small zones at the oxygen–sulphide interface in stable (non-bioturbated) sediments. The presence of a wooden wreck buried in the sediment at 10 cm depth within a large area of intertidal sand flat colonised by lugworms provided a unique opportunity to confront field observations with laboratory simulations. The site with the wooden wreck, which was used as control site, was devoid of both A. marina and C. edule, while the composition of the rest of the zoobenthic community was rather similar to that of the surrounding area. In the field, the density of total bacteria was approximately one order of magnitude higher in the control site than in the natural (bioturbated) site. This can be explained by the higher contents of silt and clay particles (higher surface-area/volume ratio) and higher total organic-carbon contents found at the control site. It appears that the presence of macrofauna affects sedimentation processes, which indirectly influence bacterial dynamics. Samples from the control site have been incubated in the laboratory with A. marina and C. edule added (bioturbated core), while an unamended core served as a control. The laboratory experiments contrasted with the field observations, because it was found that total bacteria were actually higher in the deeper layers of the bioturbated core. Moreover, the populations were more homogeneous (less stratified) and colourless sulphur bacteria were on average less numerous in the bioturbated core. In general, laboratory incubations resulted in a decrease of total bacteria with a concomitant increase of colourless and phototrophic sulphur-oxidising bacteria and thus in modifications of the bacterial community structure. Hence, our results demonstrate that care must be taken in extrapolating results from laboratory experiments (e.g. mesocosm research) to field situations.  相似文献   
402.
The Black River (Upper Ordovician – Sandbian) and Trenton (Upper Ordovician – Katian) groups are traditionally interpreted as a deepening-upward succession deposited in a progressively subsiding Appalachian Basin margin that contained warm-water, marine, photozoan deposits that pass upward into cool-water, marine, heterozoan carbonates. This succession is customarily interpreted to reflect an incursion of cold, high-latitude ocean waters into the area. This view is herein confirmed for coeval carbonates in the northern part of the basin, particularly the St. Lawrence Platform. They are now well explained in this study on the basis of recent studies of cool-water carbonates and calcite–aragonite seas. Overall the succession is one of Sandbian photozoan ramp deposits succeeded by Katian heterozoan ramp carbonates that changed back to photozoan ramp deposits prior to the Hirnantian glaciation. The current interpretation, that deposition took place throughout a calcite sea time, seems at odds with this series of strata. Instead it is herein proposed that deposition took place during an aragonite sea time wherein calcite sea-like sediments accumulated under cold ocean-water temperatures. Such an interpretation is supported by recent experimental data that supports the importance of seawater temperature on CaCO3 polymorph precipitation. If correct, this means that some of the evidence for calcite sea deposition through time brought about by global tectonics, should be re-evaluated to make sure it was not simply cool-water carbonate production.  相似文献   
403.
Near-infrared adaptive optics as well as fringe tracking for coherent beam combination in optical interferometry require the development of high-speed sensors. Because of the high speed, a large analog bandwidth is required. The short exposure times result in small signal levels which require noiseless detection. Both requirements cannot be met by state-of-the-art conventional CMOS technology of near-infrared arrays as has been attempted previously. A total of five near-infrared SAPHIRA 320 × 256 pixel HgCdTe eAPD arrays have been deployed in the wavefront sensors and in the fringe tracker of the VLTI instrument GRAVITY. The current limiting magnitude for coherent exposures with GRAVITY is mk = 19, which is made possible with ADP technology. New avalanche photo-diode array (APD) developments since GRAVITY include the extension of the spectral sensitivity to the wavelength range from 0.8 to 2.5 μm. After GRAVITY a larger format array with 512 × 512 pixels has been developed for both AO applications at the ELT and for long integration times. Since dark currents of <10−3 e/s have been demonstrated with 1Kx1K eAPD arrays and 2Kx2K eAPD arrays have already been developed, the possibilities and adaptations of eAPD technology to provide noiseless large-format science-grade arrays for long integration times are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号