首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125192篇
  免费   2130篇
  国内免费   1017篇
测绘学   3213篇
大气科学   9882篇
地球物理   25294篇
地质学   45712篇
海洋学   10309篇
天文学   25963篇
综合类   358篇
自然地理   7608篇
  2020年   845篇
  2019年   892篇
  2018年   4249篇
  2017年   4093篇
  2016年   3725篇
  2015年   1716篇
  2014年   2500篇
  2013年   5311篇
  2012年   3583篇
  2011年   5957篇
  2010年   5466篇
  2009年   6676篇
  2008年   5689篇
  2007年   5894篇
  2006年   3860篇
  2005年   3642篇
  2004年   3544篇
  2003年   3442篇
  2002年   3154篇
  2001年   2682篇
  2000年   2667篇
  1999年   2237篇
  1998年   2213篇
  1997年   2204篇
  1996年   1936篇
  1995年   1826篇
  1994年   1700篇
  1993年   1531篇
  1992年   1487篇
  1991年   1334篇
  1990年   1514篇
  1989年   1365篇
  1988年   1287篇
  1987年   1499篇
  1986年   1335篇
  1985年   1651篇
  1984年   1857篇
  1983年   1796篇
  1982年   1658篇
  1981年   1571篇
  1980年   1442篇
  1979年   1357篇
  1978年   1407篇
  1977年   1302篇
  1976年   1198篇
  1975年   1144篇
  1974年   1190篇
  1973年   1163篇
  1972年   748篇
  1971年   689篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
In situ oxygen isotopic measurements of primary and secondary minerals in Type C CAIs from the Allende CV3 chondrite reveal that the pattern of relative enrichments and depletions of 16O in the primary minerals within each individual CAI are similar to the patterns observed in Types A and B CAIs from the same meteorite. Spinel is consistently the most 16O-rich (Δ17O = −25‰ to −15‰), followed by Al,Ti-dioside (Δ17O = −20‰ to −5‰) and anorthite (Δ17O = −15‰ to 0‰). Melilite is the most 16O-depleted primary mineral (Δ17O = −5‰ to −3‰). We conclude that the original melting event that formed Type C CAIs occurred in a 16O-rich (Δ17O  −20‰) nebular gas and they subsequently experienced oxygen isotopic exchange in a 16O-poor reservoir. At least three of these (ABC, TS26F1 and 93) experienced remelting at the time and place where chondrules were forming, trapping and partially assimilating 16O-poor chondrule fragments. The observation that the pyroxene is 16O-rich relative to the feldspar, even though the feldspar preceded it in the igneous crystallization sequence, disproves the class of CAI isotopic exchange models in which partial melting of a 16O-rich solid in a 16O-poor gas is followed by slow crystallization in that gas. For the typical (not associated with chondrule materials) Type C CAIs as well for as the Types A and B CAIs, the exchange that produced internal isotopic heterogeneity within each CAI must have occurred largely in the solid state. The secondary phases grossular, monticellite and forsterite commonly have similar oxygen isotopic compositions to the melilite and anorthite they replace, but in one case (CAI 160) grossular is 16O-enriched (Δ17O = −10‰ to −6‰) relative to melilite (Δ17O = −5‰ to −3‰), meaning that the melilite and anorthite must have exchanged its oxygen subsequent to secondary alteration. This isotopic exchange in melilite and anorthite likely occurred on the CV parent asteroid, possibly during fluid-assisted thermal metamorphism.  相似文献   
962.
The dissolution and precipitation rates of boehmite, AlOOH, at 100.3 °C and limited precipitation kinetics of gibbsite, Al(OH)3, at 50.0 °C were measured in neutral to basic solutions at 0.1 molal ionic strength (NaCl + NaOH + NaAl(OH)4) near-equilibrium using a pH-jump technique with a hydrogen-electrode concentration cell. This approach allowed relatively rapid reactions to be studied from under- and over-saturation by continuous in situ pH monitoring after addition of basic or acidic titrant, respectively, to a pre-equilibrated, well-stirred suspension of the solid powder. The magnitude of each perturbation was kept small to maintain near-equilibrium conditions. For the case of boehmite, multiple pH-jumps at different starting pHs from over- and under-saturated solutions gave the same observed, first order rate constant consistent with the simple or elementary reaction: .

This relaxation technique allowed us to apply a steady-state approximation to the change in aluminum concentration within the overall principle of detailed balancing and gave a resulting mean rate constant, (2.2 ± 0.3) × 10−5 kg m−2 s−1, corresponding to a 1σ uncertainty of 15%, in good agreement with those obtained from the traditional approach of considering the rate of reaction as a function of saturation index. Using the more traditional treatment, all dissolution and precipitation data for boehmite at 100.3 °C were found to follow closely the simple rate expression:

Rnet,boehmite=10-5.485{mOH-}{1-exp(ΔGr/RT)}, with Rnet in units of mol m−2 s−1. This is consistent with Transition State Theory for a reversible elementary reaction that is first order in OH concentration involving a single critical activated complex. The relationship applies over the experimental ΔGr range of 0.4–5.5 kJ mol−1 for precipitation and −0.1 to −1.9 kJ mol−1 for dissolution, and the pHm ≡ −log(mH+) range of 6–9.6. The gibbsite precipitation data at 50 °C could also be treated adequately with the same model:Rnet,gibbsite=10-5.86{mOH-}{1-exp(ΔGr/RT)}, over a more limited experimental range of ΔGr (0.7–3.7 kJ mol−1) and pHm (8.2–9.7).  相似文献   

963.
Thirty-four silicate and oxide inclusions large enough for in situ WDS electron microprobe analysis were exposed by grinding/polishing of 19 diamonds from the Kelsey Lake Mine in the Colorado-Wyoming State Line Kimberlite district. Eighteen olivines, seven Cr-pyropes, four Mg-chromites, and one orthopyroxene in 15 stones belong to the peridotite (P) suite and three garnets and one omphacite in three stones belong to the eclogite (E) suite. The fact that this suite is dominated by the peridotite population is in stark contrast to the other diamond suites studied in the State Line district (Sloan, George Creek), which are overwhelmingly eclogitic. Kelsey Lake olivine inclusions are magnesian (17 of 18 grains in 9 stones are in the range Fo 92.7-93.1), typical of harzburgitic P-suite stones worldwide, but unlike the more Fe-rich (lherzolitic) Sloan olivine suite. Mg-chromites (wt% MgO = 12.8-13.8; wt% Cr2O3 = 61.4-66.6) are in the lower MgO range of diamond inclusion chromites worldwide. Seven harzburgitic Cr-pyropes in five stones have moderately low calcium contents (wt% CaO = 3.3-4.3) but are very Cr-rich (wt% Cr2O3 = 9.7-16.7). A few stones have been analyzed by SIMS for carbon isotope composition and nitrogen abundance. One peridotitic stone is apparently homogeneous in carbon isotope composition (δ13CPDB = −6.2‰) but with variable nitrogen abundance (1296-2550 ppm). Carbon isotopes in eclogitic stones range from “normal” for the upper mantle (δ13CPDB = −5.5‰) to somewhat low (δ13CPDB = −10.2‰), with little internal variation in individual stones (maximum difference is 3.6‰). Nitrogen contents (2-779 ppm) are lower than in the peridotitic stone, and are lower in cores than in rims. As, worldwide, harzburgite-suite diamonds have been shown to have formed in Archean time, we suggest that the Kelsey Lake diamond population was derived from a block of Archean lithosphere that, at the time of kimberlite eruption, existed beneath the Proterozoic Yavapai province. The mixed diamond inclusion populations from the State Line kimberlites appear to support models in which volumes of Wyoming Craton Archean mantle survive buried beneath Proterozoic continental crust. Such material may be mixed with eclogitic/lherzolitic regimes emplaced beneath or intermingled with the Archean rocks by Proterozoic subduction.  相似文献   
964.
A strain of thermophilic fungus Aspergillus fumigatus was cultured with K-bearing minerals to determine if microbe-mineral interactions enhance the release of mineralic potassium. Experiments were carried out in two settings, one with the mineral grains and the fungal cells in direct contact, and the other employing a membrane (pore size 0.22 μm) to separate the two. Measurements over a period of 30 days showed that, irrespective of the experimental setup, the concentration of free K in the culture was drastically higher than those in any of the control experiments where no living organism was present. Moreover, the occurrence of mineral-cell physical contact enhanced potassium release by an additional factor of 3 to 4 in comparison to the separation experiments. For contact experiments, Electron Probe Microanalysis revealed the formation of mycelium-mineral aggregates, and Atomic Force Microscopy imaging further indicated the possible ingestion of mineral particles by the fungus cells. Contrasting to what was observed and expected in control experiments, the potassium solubilization rate showed a positive dependence upon pH when fungi and minerals were mixed directly, and exhibited no correlations with solution acidity if cell-rock contact was restrained. These results appear to suggest that A. fumigatus promoted potassium release by means of at least three likely routes, one through the complexation of soluble organic ligands, another appealing to the immobile biopolymers such as the insoluble components of secretion, and the third related to the mechanical forces in association with the direct physical contact between cells and mineral particles.  相似文献   
965.
The voluminous 2.5 Ga banded iron formations (BIFs) from the Hamersley Basin (Australia) and Transvaal Craton (South Africa) record an extensive period of Fe redox cycling. The major Fe-bearing minerals in the Hamersley-Transvaal BIFs, magnetite and siderite, did not form in Fe isotope equilibrium, but instead reflect distinct formation pathways. The near-zero average δ56Fe values for magnetite record a strong inheritance from Fe3+ oxide/hydroxide precursors that formed in the upper water column through complete or near-complete oxidation. Transformation of the Fe3+ oxide/hydroxide precursors to magnetite occurred through several diagenetic processes that produced a range of δ56Fe values: (1) addition of marine hydrothermal , (2) complete reduction by bacterial dissimilatory iron reduction (DIR), and (3) interaction with excess that had low δ56Fe values and was produced by DIR. Most siderite has slightly negative δ56Fe values of ∼ −0.5‰ that indicate equilibrium with Late Archean seawater, although some very negative δ56Fe values may record DIR. Support for an important role of DIR in siderite formation in BIFs comes from previously published C isotope data on siderite, which may be explained as a mixture of C from bacterial and seawater sources.Several factors likely contributed to the important role that DIR played in BIF formation, including high rates of ferric oxide/hydroxide formation in the upper water column, delivery of organic carbon produced by photosynthesis, and low clastic input. We infer that DIR-driven Fe redox cycling was much more important at this time than in modern marine systems. The low pyrite contents of magnetite- and siderite-facies BIFs suggests that bacterial sulfate reduction was minor, at least in the environments of BIF formation, and the absence of sulfide was important in preserving magnetite and siderite in the BIFs, minerals that are poorly preserved in the modern marine record. The paucity of negative δ56Fe values in older (Early Archean) and younger (Early Proterozoic) BIFs suggests that the extensive 2.5 Ga Hamersley-Transvaal BIFs may record a period of maximum expansion of DIR in Earth’s history.  相似文献   
966.
We have combined metal-silicate partitioning data from the literature with new experimental results at 1.5-8 GPa and 1480-2000 °C to parameterize the effects of pressure, temperature and composition on the partitioning of V, Cr and Nb between liquid Fe metal (with low S and C content) and silicate melt.Using information from the steelmaking literature to correct for interactions in the metal phase, we find that, for peridotitic silicate melts, metal-silicate partition coefficients are given by:
  相似文献   
967.
Most magmas proposed as parental to the Martian SNC meteorites are high in iron and low in alumina. Yet, experiments at low pressures on such liquids have not produced the cumulate or melt-inclusion assemblages seen in the chassignite meteorites. Therefore, elevated pressure experiments under anhydrous and hydrous (water-undersaturated) conditions were conducted on a high-Fe, low-Al liquid proposed to be parental to the Chassigny meteorite. These experiments failed to produce the most magnesian cumulate phases, as well as the olivine hosted kaersutite-bearing melt-inclusion assemblage, of the chassignites. These results suggest that the parental liquid to the chassignite meteorites is both more magnesium and aluminum-rich than the previously considered composition (A; Johnson et al., 1991). The proposed composition is similar to the Martian Adirondack class Gusev basalt Humphrey and suggests a link between the Chassigny meteorite and rocks on the surface of Mars.  相似文献   
968.
Time-dependent sorption and desorption of Cd on calcite was studied over 210 days utilizing 109Cd as a tracer to distinguish between ‘labile’ and ‘non-labile’ forms of sorbed Cd. Stabilizing the calcite suspensions for 12 months under atmospheric PCO2 and controlled temperature was necessary to reliably follow Cd dynamics following initial sorption. Results revealed time-dependant Cd sorption and marked desorption hysteresis by calcite under environmentally relevant conditions. Data obtained were fitted to a first-order kinetic model and a concentric shell diffusion model. Both models described the progressive transfer of Cd2+ to a less reactive form within calcite and subsequent desorption of Cd subject to different initial contact times. The kinetic model provided a better fit to the combined sorption and desorption data (R2 = 0.992). It differentiates between two ‘pools’ of sorbed Cd2+ on calcite, ‘labile’ and ‘non-labile’, in which labile sorbed Cd is in immediate equilibrium with the free Cd2+ ion activity in solution whereas non-labile Cd is kinetically restricted. For the diffusion model (R2 = 0.959), the rate constants describing Cd dynamics in calcite produced a half-life for Cd desorption of ∼175 d, for release to a ‘zero-sink’ solution. Results from this study allow comment on the likely mechanisms occurring at the calcite surface following long-term Cd sorption.  相似文献   
969.
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from −2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo (αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ30Si value from roots to stem, including larger ratio of dissolved H4SiO4 to precipitated SiO2 in roots than in stem. There is a positive correlation between the δ30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor (αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO2 contents and δ30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.  相似文献   
970.
Samarium-neodymium isotopic analyses of unleached and acid-leached mineral fractions from the recently identified olivine-bearing shergottite Northwest Africa 1195 yield a crystallization age of 347 ± 13 Ma and an value of +40.1 ± 0.9. Maskelynite fractions do not lie on the Sm-Nd isochron and appear to contain a martian surface component with low 147Sm/144Nd and 143Nd/144Nd ratios that was added during shock. The Rb-Sr system is disturbed and does not yield an isochron. Terrestrial Sr appears to have affected all of the mineral fractions, although a maximum initial 87Sr/86Sr ratio of 0.7016 is estimated by passing a 347 Ma reference line through the maskelynite fraction that is least affected by contamination. The high initial value and the low initial 87Sr/86Sr ratio, combined with the geologically young crystallization age, indicate that Northwest Africa 1195 is derived from a source region characterized by a long-term incompatible-element depletion.The age and initial Sr and Nd isotopic compositions of Northwest Africa 1195 are very similar to those of Queen Alexandra Range 94201, indicating these samples were derived from source regions with similar Sr-Nd isotopic systematics. These similarities suggest that these two meteorites share a close petrogenetic relationship and might have been erupted from a common volcano. The meteorites Yamato 980459, Dar al Gani 476, Sayh al Uhaymir 005/008, and Dhofar 019 also have relatively old ages between 474 and 575 Ma and trace element and/or isotopic systematics that are indicative of derivation from incompatible-element-depleted sources. This suggests that the oldest group of meteorites is more closely related to one another than they are to the younger meteorites that are derived from less incompatible-element-depleted sources. Closed-system fractional crystallization of this suite of meteorites is modeled with the MELTS algorithm using the bulk composition of Yamato 980459 as a parent. These models reproduce many of the major element and mineralogical variations observed in the suite. In addition, the rare earth element systematics of these meteorites are reproduced by fractional crystallization using the proportions of phases and extents of crystallization that are calculated by MELTS. Other shergottites that demonstrate enrichments in incompatible-elements and have evolved Sr and Nd isotopic systematics have some geochemical systematics that are similar to those observed in the depleted group. Most notably, although they exhibit a very limited range of incompatible trace element and isotopic compositions, they have highly variable major element compositions. This is also consistent with evolution from a common mantle source region by variable amounts of fractional crystallization. If this scenario is correct, it suggests that the combined effects of source composition and fractional crystallization are likely to account for the major element, trace element, and isotopic diversity of all shergottites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号