首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   2篇
地球物理   3篇
地质学   30篇
天文学   1篇
自然地理   56篇
  2021年   1篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   8篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1990年   3篇
  1988年   2篇
  1981年   1篇
  1980年   3篇
  1976年   1篇
  1972年   1篇
排序方式: 共有90条查询结果,搜索用时 31 毫秒
21.
A new palaeoclimatic reconstruction of mid-summer (July) temperatures for the last 7.5?ka in northern Fennoscandia is presented. It is based on two botanical proxies: spectra of fossil pollen and tree rings of Scots pine logs recovered from lacustrine sediments in the Arctic tree-line region. A newly developed method of proxy fusion is used to integrate the proxy-specific reconstructions of past summer temperature variability based on the pollen-stratigraphic and dendroclimatic data. The rationale behind the method is that the two proxies are likely to be connected to climate variability in a timescale-dependent fashion and, accordingly, the new reconstruction makes use of the low- and high-frequencies from pollen-stratigraphic and tree-ring data, respectively. The most prominent features of the new reconstruction are: (1) the long-term decline of temperatures by 2.0?°C over the past 7.5?ka, (2) the mid-Holocene warmth culminating between 5 and 4?ka as a deviation from the cooling trend, (3) the Little Ice Age cool phase between 0.7 and 0.1?ka, and (4) the subsequent warming during the past century. These periods are superimposed on year-to-year variations in climate as dated to calendar-year accuracy by dendrochronology. Within the modern period, the years 1934 and 1937 are among the warmest, and the years 1903 and 1910 are among the coldest summers in the context of the past 7.5?ka. On average, the reconstructed Holocene climate was approximately 0.85?°C warmer than the twentieth century.  相似文献   
22.
The large landmass of northern Russia has the potential to influence global climate through amplification of climate change. Reconstructing climate in this region over millennial timescales is crucial for understanding the processes that affect the global climate system. Chironomids, preserved in lake sediments, have the potential to produce high resolution, low error, quantitative summer air temperature reconstructions. Canonical correspondence analysis of modern surface sediments from high-latitude lakes, located in northern European Russia and central Siberia, suggests that mean July air temperature is the most significant variable explaining chironomid distribution and abundance. This strong relationship enabled the development of a chironomid-based mean July air temperature-inference model based on 81 lakes and 89 taxa which has a rjack2 = 0.92 and RMSEP = 0.89 °C. Comparison of taxon responses to July temperature between this Russian and existing Norwegian data-sets shows that the temperature optima of individual taxa were between 1 and 3 °C higher in the Russian data regardless of modelling technique. Reconstructions based on fossil assemblages from a Russian tundra lake core (VORK5) using a Norwegian chironomid-based inference model provide mean July air temperature estimates that are 1.0–2.7 °C colder than from the 81-lake Russian model and are also lower than the instrumental record from a nearby meteorological station. The Norwegian model also did not reconstruct decadal-scale fluctuations in temperature seen in the instrumental record. These observations suggest that chironomid-based inference models should only be applied to sediment cores which have similar climate regimes to the geographic area of the training set. In addition a 149 lake, 120 taxa chironomid-based continentality inference model was also developed from the modern Norwegian and Russian training sets. A 2-component WA-PLS model was the minimal adequate model with rjack2 = 0.73 and RMSEP = 9.9 using the Gorczynski continentality index. Comparison of reconstructed continentality indices from the tundra lake, VORK5, show close agreement with local instrumental records over the past 70 years and suggest that the model is reliable. Recent warming in the Arctic has been spatially and seasonally heterogeneous; in many areas warming is more pronounced in the spring and autumn leading to a lengthening of the summer, while summer temperatures have remained relatively stable. A continentality inference model has the potential to detect these seasonal changes in climate.  相似文献   
23.
Icelandic and Norwegian chironomid calibration or training sets were merged to investigate whether a larger combined training set would be useful to apply to subfossil chironomid data from Iceland for periods such as the early Holocene, the Holocene Thermal Maximum and the Little Ice Age, when temperatures can be expected to be outside the current temperature range of the Icelandic training set. Following taxonomic harmonisation, the Icelandic and Norwegian data sets were compared before being merged to form a combined Norwegian-Icelandic training set. Analyses showed that it was biologically and statistically valid to merge the two data sets. The resulting combined inference model for mean July air temperature had improved performance statistics (r2jack = 0.87; RMSEPjack = 1.13) when compared to the best performing Icelandic model (r2jack = 0.61; RMSEPjack = 0.83), due to the longer environmental gradient covered (Icelandic 6–11 °C; combined 3.5–16 °C), and to the increased number of samples (Icelandic = 53 lakes; combined = 207 lakes) and taxa (Icelandic = 47 taxa; combined = 133 taxa) present within the combined training set. The inference models were applied to an early Holocene chironomid sequence from Vatnamýri, north Iceland, and a 450-year recent record from Myfluguvatn, north-west Iceland, to compare the reconstructions produced. The various inference models produced similar trends and patterns of temperature reconstruction, but the inference model based on the combined training set produced a larger range of reconstructed temperatures than the Icelandic model. It was found that different inference models produced more variation in the reconstruction than when different training sets were used. A comparison of the Myfluguvatn reconstructions with meteorological observations showed that the combined Norwegian–Icelandic inference model produced more reliable results than the Icelandic or Norwegian inference models alone.  相似文献   
24.
Data on soils with six Neoglacial moraines of the Klutlan Glacier have been compared with those from moraines at the warm, moist coastal site of Glacier Bay, 160 km south. Percentage organic matter increases rapidly for the first 100 to 150 yr of soil development and then continues to rise gradually for the next 100 yr. Soil pH falls from 8.0 in recent till to approximately 6.0 in 200-yr-old soils. Nitrogen levels in the mineral soil increase from near zero in recent tills to 0.7% in soils 175–200 yr old; organic horizons of soils associated with spruce forests in later successional stages contain approximately 1% nitrogen. Concentrations of certain inorganic phosphate ions in the different-aged soils increase continually throughout the succession. Data for nine chemical variables were subjected to a principal components analysis; the major pattern in the data reflects the differences between soils of low organic content and high pH present in early successional stages, and nutrient-rich soils with high organic content and low pH present after succession has progressed toward the spruce forest. These trends in soil development with time are strikingly similar to those reported from Glacier Bay, except that the changes in soil properties appear to be delayed by 50–100 yr at the Klutlan terminus. Although numerous signs of nitrogen deficiency have been identified in plants growing on new soils at Glacier Bay, none was observed visually in living plants or in nutrients measured in samples of foliage from three plant taxa (Epilobium latifolium, Salix spp., and Populus balsamifera) taken from the Klutlan moraines. Concentrations of nitrogen and other nutrients (Ca, Mg, K, total P) in the foliage samples show no clear trends with increasing soil development. Low temperatures, a short growing season, and very low mean annual precipitation probably limit plant growth and account for the delayed soil development on the Klutlan moraines.  相似文献   
25.
26.
The diatom composition in surface sediments from 119 northern Swedish lakes was studied to examine the relationship with lake-water pH, alkalinity, and colour. Diatom-based predictive models, using weighted-averaging (WA) regression and calibration, partial least squares (PLS) regression and calibration, and weighted-averaging partial least squares (WA-PLS) regression and calibration, were developed for inferences of water chemistry conditions. The non-linear response between the diatom assemblages and pH and alkalinity was best modelled by weighted-averaging methods. The lowest prediction error for pH was obtained using weighted averaging, with or without tolerance downweighting. For alkalinity there was still some information in the residual structure after extracting the first weighted-averaging component, which resulted in a slight improvement of predictions when using a two component WA-PLS model. The best colour predictions were obtained using a two component PLS model. Principal component analysis (PCA) of the prediction errors, with some characteristics of the training set included as passive variables, was performed to compare the results for the different alkalinity predictive models. The results indicate that calibration techniques utilizing more than one component (PLS and WA-PLS) can improve the predictions for lakes with diatom taxa that have broad tolerances. Furthermore, we show that WA-PLS performs best compared with the other techniques for those lakes that have a high relative abundance of the most dominant taxa and a corresponding low sample heterogeneity.  相似文献   
27.
This paper introduces the results of an integrated project designed to compare high resolution analysis of proxy records of climate change in the sediments of seven mountain lakes across Europe with reconstructed instrumental records of climate change over the last 200 years. Palaeolimnological methods used include radiometric dating (210Pb, 137Cs), mineral magnetics, dry weight, loss-on-ignition, carbon, nitrogen, sulphur, pigments, diatoms, chrysophyte cysts, cladocera and chironomids. Changes in fossil assemblages were summarised using principal components analysis. The stratigraphic data were compared with the instrumental record using linear regression techniques. The dated sediment records for each proxy from each site were treated as the response variables and the various attributes of the instrumental climate record as the predictor variables. The predictor variables were generated for each site for the period 1781 to 1997 using temperature reconstructions based on meteorological records. To harmonise the climatic predictors and the response variables, the climatic variables were smoothed along time with a LOESS regression. The results of the various analyses at the seven sites are presented in the following papers. A synthesis of the project and the relative performance of the different proxy methods are discussed in the final paper.  相似文献   
28.
Cladoceran microfossil remains were analysed from a sediment core taken from a lake basin at Kråkenes, western Norway. The sequence included immediate post-glacial conditions (ca. 12,300 14C BP), the Allerod, Younger Dryas, and early Holocene to approximately 8,500 14C BP. The interpretation of changes in the cladoceran assemblages is based on the known ecology of the taxa, the documented environmental history of the study sequence, the variations in the organic content of the sediment, the radiocarbon dates, and the results of analyses of other biotic groups, including diatoms, macrophytes, and chironomids. In addition, a quantitative reconstruction of changes in air temperature is presented for the study period. This reconstruction is based on transfer functions developed from a separate Swiss surface-sediment cladoceran data set.The cladoceran assemblages throughout the sequence are dominated by littoral chydorid taxa. Bosmina, Daphnia, and Simocephalus represent the open-water component of the zooplankton. Chydorus piger and Daphnia were the only immediate post-glacial pioneer taxa. A rapid proliferation of the open-water and littoral cladoceran taxa began with the onset of the Allerod and persisted for approximately 1,000 yrs. At the start of the Younger Dryas a local glacier formed and drained into the lake, causing a sudden decline in chydorid diversity, with only Chydorus sphaericus and Acroperus harpae persisting throughout this period. Chydorid diversity started to recover in the upper Younger Dryas and continued in the early Holocene. Progressive acidification and oligotrophication are also discernible from the cladoceran assemblages present in the Holocene.The reconstructed mean summer air temperature was from 8-21 °C, with prediction errors of 1.8-2.5 °C. The Allerod was only slightly warmer than the Younger Dryas period, but a progressive increase in temperature is apparent during the early Holocene. In conclusion, the results of this study provide a further demonstration of the value of cladocera as indicators of a variety of palaeoenvironmental parameters, including temperature.  相似文献   
29.
Numerous pollen records across the upper Tibetan Plateau indicate that in the early part of the mid-Holocene, Kobresia-rich high-alpine meadows invaded areas formerly dominated by alpine steppe vegetation rich in Artemisia. We examine climate, land-use, and CO2 concentration changes as potential drivers for this marked vegetation change. The climatic implications of these vegetational shifts are explored by applying a newly developed pollen-based moisture-balance transfer-function to fossil pollen spectra from Koucha Lake on the north-eastern Tibetan Plateau (34.0°N; 97.2°E; 4540 m a.s.l.) and Xuguo Lake on the central Tibetan Plateau (31.97°N; 90.3°E; 4595 m a.s.l.), both located in the meadow-steppe transition zone. Reconstructed moisture-balances were markedly reduced (by ~150–180 mm) during the early mid-Holocene compared to the late-Holocene. These findings contradict most other records from the Indian monsoonal realm and also most non-pollen records from the Tibetan Plateau that indicate a rather wet early- and mid-Holocene. The extent and timing of anthropogenic land-use involving grazing by large herbivores on the upper Tibetan Plateau and its possible impacts on high-alpine vegetation are still mostly unknown due to the lack of relevant archaeological evidence. Arguments against a mainly anthropogenic origin of Kobresia high-alpine meadows are the discovery of the widespread expansion of obviously ‘natural’ Kobresia meadows on the south-eastern Tibetan Plateau during the Lateglacial period indicating the natural origin of this vegetation type and the lack of any concurrence between modern human-driven vegetation shifts and the mid-Holocene compositional changes. Vegetation types are known to respond to atmospheric CO2 concentration changes, at least on glacial–interglacial scales. This assumption is confirmed by our sensitivity study where we model Tibetan vegetation at different CO2 concentrations of 375 (present-day), 260 (early Holocene), and 650 ppm (future scenario) using the BIOME4 global vegetation model. Previous experimental studies confirm that vegetation growing on dry and high sites is particularly sensitive to CO2 changes. Here we propose that the replacement of drought-resistant alpine steppes (that are well adapted to low CO2 concentrations) by mesic Kobresia meadows can, at least, be partly interpreted as a response to the increase of CO2 concentration since 7000 years ago due to fertilization and water-saving effects. Our hypothesis is corroborated by former CO2 fertilization experiments performed on various dry grasslands and by the strong recent expansion of high-alpine meadows documented by remote sensing studies in response to recent CO2 increases.  相似文献   
30.
The 167 sample lake-water pH-diatom calibration data-set created as part of the Palaeolimnology Programme within the Surface Water Acidification Project (SWAP) is re-analysed numerically using nine different numerical methods, six based on simple two-way weighted-averaging (WA), and the other three involving Gaussian logit regression (GLR) and maximum-likelihood (ML) calibration, the modern analogue technique, or weighted-averaging partial least-squares regression and calibration. Root mean squared error of prediction and maximum bias were estimated for all nine methods based on 10,000 internal and 10,000 external cross-validations involving a training-set, an optimisation-set, and a test-set. The results show that WA with a monotonic deshrinking spline equals or slightly outperforms WA with linear inverse deshrinking, especially in external cross-validation. Methods that employ tolerance downweighting generally have an inferior performance except when combined with monotonic deshrinking. It appears that simple two-way WA extensively used in SWAP cannot be significantly bettered. Thanks to increased computing power, better software, and more rigorous cross-validations, GLR shows good performance, especially in external cross-validation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号