首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   20篇
  国内免费   13篇
测绘学   18篇
大气科学   22篇
地球物理   118篇
地质学   180篇
海洋学   10篇
天文学   14篇
综合类   5篇
自然地理   20篇
  2023年   2篇
  2022年   10篇
  2021年   12篇
  2020年   30篇
  2019年   19篇
  2018年   40篇
  2017年   37篇
  2016年   42篇
  2015年   23篇
  2014年   25篇
  2013年   30篇
  2012年   30篇
  2011年   24篇
  2010年   16篇
  2009年   8篇
  2008年   6篇
  2007年   6篇
  2006年   8篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有387条查询结果,搜索用时 421 毫秒
331.
The majority of cities are rapidly growing. This makes the monitoring and modeling of urban change’s spatial patterns critical to urban planners, decision makers, and environment protection activists. Although a wide range of methods exists for modeling and simulating urban growth, machine learning (ML) techniques have received less attention despite their potential for producing highly accurate predictions of future urban extents. The aim of this study is to investigate two ML techniques, namely radial basis function network (RBFN) and multi-layer perceptron (MLP) networks, for modeling urban change. By predicting urban change for 2010, the models’ performance is evaluated by comparing results with a reference map and by using a set of pertinent statistical measures, such as average spatial distance deviation and figure of merit. The application of these techniques employs the case study area of Mumbai, India. The results show that both models, which were tested using the same explanatory variables, produced promising results in terms of predicting the size and extent of future urban areas. Although a close match between RBFN and MLP is observed, RBFN demonstrates higher spatial accuracy of prediction. Accordingly, RBFN was utilized to simulate urban change for 2020 and 2030. Overall, the study provides evidence that RBFN is a robust and efficient ML technique and can therefore be recommended for land use change modeling.  相似文献   
332.
The evolution of the microstructure of an assembly of cohesionless granular materials with associated pores, which carry the overall applied stresses through frictional contacts is a complex phenomenon. The macroscopic flow of such materials take place by the virtue of the relative rolling and sliding of the grains on the micro‐scale. A new discrete element method for biaxial compression simulations of random assemblies of oval particles with mixed sizes is introduced. During the course of deformation, the new positions of the grains are determined by employing the static equilibrium equations. A key aspect of the method is that, it is formulated for ellipse cross‐sectional particles, hence desirable inherent anisotropies are possible. A robust algorithm for the determination of the contact points between neighbouring grains is given. Employing the present methodology, many aspects of the behaviour of two‐dimensional assemblies of oval cross‐sectional rods have been successfully addressed. The effects of initial void ratio, interparticle friction angle, aspect ratio, and bedding angle on the rolling and sliding contacts are examined. The distribution of normals to the rolling and sliding contacts have different patterns and are concentrated along directions, which are approximately perpendicular to one another. On the other hand, the distribution of all contact normals (combined rolling and sliding) are close to that of rolling contacts, which confirm that rolling is the dominant mechanism. This phenomenon becomes more pronounced for higher intergranular friction angle. Characteristics of the rolling and sliding contacts are also discussed in the context of the force angle, which is the inclination of contact force with respect to the contact normal. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
333.
Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55–70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.  相似文献   
334.
The Christensen criterion, originally introduced in materials science, has a simple mathematical form and uniaxial tensile and compressive strength as the only parameters, making it an attractive candidate for rock engineering purposes. In this study, the applicability of the criterion to rock materials is examined. Explicit equations for application of the criterion under biaxial, triaxial compression, triaxial extension, and polyaxial states of stresses are derived. A comprehensive strength data set including the results of tests on synthetic rock, chert dyke, Carrara marble and Westerly granite is utilized to examine the accuracy of the Christensen criterion to the failure of rock material. The two surprising findings about the Christensen criterion are the zero values of tensile strength and the very low slopes of the failure envelope obtained from fitting analyses for chert dyke and Westerly granite. It is shown that the two problems are interrelated and the values of tensile strength tend to zero to produce higher slopes. It is then mathematically proven that the maximum initial slope of the Christensen failure envelope is limited to 4 in triaxial compression and 2.5 in triaxial extension which is considerably lower than the slope of experimental data. The accuracy of the Christensen criterion was found to be significantly lower than the well-established Hoek–Brown criterion. The circular π-plane representations and brittle-to-ductile transition limits from the Christensen criterion are also inconsistent with the observed behavior of rocks.  相似文献   
335.
Effect of Natural Zeolite and Cement Additive on the Strength of Sand   总被引:1,自引:1,他引:0  
It is widely known and well emphasized that the cemented sand is one of economic and environmental topics in soil stabilization. In some instances, a blend of sand, cement and other materials such as fiber, glass, nano particle and zeolite can commercially be available and effectively used in soil stabilization especially in road construction. In regard to zeolite, its influence and effectiveness on the properties of cemented sands systems has not been completely explored. Hence, in this study, based on an experimental program, it has been tried to investigate the potential of a zeolite stabilizer known as additive material to improve the properties of cemented sands. A total number of 216 unconfined compression tests were carried out on cured samples in 7, 28 and 90 days. Results show unconfined compression strength and failure properties improvements of cement sand specimens when cement replaced by zeolite at optimum proportions of 30 % after 28 days due to pozzolanic reaction. The rate of strength improvement is approximately 20–78 and 20–60 % for 28 and 90 days curing times respectively. The efficiency of using zeolite has been enhanced by increasing the cement content and porosity of the compacted mixture. The replacement of cement by natural zeolite led to an increase of the pH after 14 days. Chemical oxygen demand (COD) tests demonstrate that the materials with the zeolite mixture reveal stronger adsorptive capacity of COD in compare to cemented mixture. Scanning electron microscope images show that adding zeolite in cemented sand changes the microstructure (filling large porosity and pozzolanic reaction) that results in increasing strength.  相似文献   
336.
In this research, a simulation was performed for evaluating power production from an abandoned geothermal well as an enhanced geothermal system by injecting a secondary fluid. Abandoned wells, due to lack of fluid or very low transmissivity, are regarded among the low-to moderate-temperature resources that have the potential for heat production without any cost for deep drilling. Accordingly, they are taken as suitable sources of energy. In the present paper, an abandoned geothermal well at Meshkinshahr geothermal field in Sabalan district, northwestern Iran, with 3176 m depth was simulated. The bottom-hole temperature of 148 °C, as well as well casing size, and real thermal gradient for well were applied in the model. A 3D heat transfer simulation model was designed by considering a coaxial pipe as a down-hole heat exchanger between surrounding rocks of the well and injected fluid. Injected fluid to the well with specified pressure and temperature receives heat from rocks surrounding the well, until it reaches the bottom of the well and converts to vapor. The vapor returns to the surface from inner pipe with very low heat loss during its return. The inner pipe is isolated by a thin layer having a low heat conductivity to prevent heat loss from the returned fluid. It was observed that obtained heat in the well depends on temperature profile of the well, injection velocity, and fluid mass flow rate. The model results were optimized by selecting suitable parameters such as inlet injection speed and fluid flow rate to achieve the highest temperature of the fluid returned from the well. A binary power plant was also modeled to determine the extractable power using returned fluid as input using ammonia and isobutene, as working fluids in binary cycle. Finally, electric power of 270 kW was generated from well NWS3 using designed down-hole heat exchanger.  相似文献   
337.
338.
The anisotropy effect is exhibited more prominently in sedimentary depositions, and it relates the soil’s mechanical specifications to the directions of imposed loads. Even though this phenomenon has been comprehensively explored in silica sands, few research has been conducted for studying the anisotropic behavior of marine carbonate sands. To bridge this gap, the present study investigates the anisotropy effect on the mechanical behavior of Bushehr carbonate sand acquired from the north shelf of the Persian Gulf in Iran. Toward this end, some undrained principal stress rotation tests are conducted using a hollow cylinder shear torsional apparatus in such a manner that the direction of the applied principal stresses are fixed along a desired orientation and the total mean stress and intermediate principal stress ratio are kept constant. Furthermore, prior to shearing, the samples are consolidated under three confining pressures and two isotropic and anisotropic states. The results show that dilative behavior is observed in all loading directions after initial contraction; this contradicts the response observed in silica sands. The anisotropy response of soil follows two different trends in the contractive and dilative phases. The relation of soil’s mechanical properties shows a descending trend with the angle of maximum principal stress in the contractive phase; on the other hand, the anisotropy behavior shows a dominant parabola trend in the dilative phase, where the maximum ultimate pore pressure and minimum soil strength occur in the stress direction with an angle of α?=?30°. By increasing the confining pressure in the soil element, the intensity of the anisotropy in some mechanical properties except the soil deformation is reduced. Furthermore, the deviatoric-to-effective mean stress ratio in the phase transformation state from contraction to dilation is independent of the loading direction and consolidation stress state, and it is considered one of the intrinsic properties of sand.  相似文献   
339.
The most appropriate method in designing the adsorption systems and assessing the performance of the adsorption systems is to have an idea on adsorption isotherms. Comparison analysis of linear least square method and nonlinear method for estimating the isotherm parameters was made using the experimental equilibrium data of Zn(II) and Cu(II) onto kaolinite. Equilibrium data were fitted to Freundlich, Langmuir, and Redlich–Peterson isotherm equations. In order to confirm the best-fit isotherms for the adsorption system, the data set using the chi-square (χ 2), combined with the values of the determined coefficient (r 2) was analyzed. Nonlinear method was found to be a more appropriate method for estimating the isotherm parameters. The best fitting isotherm was the Langmuir and Redlich–Peterson isotherm. The Redlich–Peterson is a special case of Langmuir when the Redlich–Peterson isotherm constant g was unity. The sorption capacity of kaolinite to uptake metal ions in the increasing order was given by Cu (4.2721 mg/g)?<?Zn (4.6710 mg/g).  相似文献   
340.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号