首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   5篇
  国内免费   2篇
测绘学   7篇
大气科学   1篇
地球物理   28篇
地质学   56篇
海洋学   2篇
天文学   5篇
综合类   3篇
自然地理   5篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   9篇
  2017年   6篇
  2016年   8篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1978年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
71.
The demand for water is rapidly increasing in Egypt, because of high population and agriculture production growth rate, which makes research of water resources necessary. The regional multi-aquifer system of the Miocene–Pleistocene age is discharged in Wadi El Natrun area. Intensive aquifer overexploitation and agricultural development in the area are related to groundwater quality deterioration. Hydrochemical and hydrogeological data was evaluated to determine the groundwater origin and quality in the south-eastern part of wadi, which appears to be more significant for water supply owing to lower groundwater salinity. The dominance of the high mineralised Cl groundwater type was found; however, also less mineralised SO4 and HCO3 types were identified there. Based on the ion relations, halite and gypsum dissolution and ion exchange are the most important hydrochemical processes forming the groundwater chemical composition. The Cl dominated groundwater matches the discharge part of the regional hydrogeological system. Contrary, the presence of HCO3 and SO4 hydrochemical types corresponds to the infiltration and transferring parts of the hydrogeological system indicating the presence of zones conducting low mineralised groundwater. The discharge area of the over-pumped aquifer in Wadi El-Natrun lies 23 m beneath the sea level with the shoreline being at the distance of 100 km, thus there is a real risk of seawater intrusion. Using the hydrochemical facies evolution diagram, four samples in the centre of the discharge area indicate advanced seawater intrusion. The zones of the highest demand for groundwater quality protection were indicated based on a spatial pattern of hydrogeochemical composition.  相似文献   
72.
Spatially distributed and varying natural phenomena encountered in geoscience and engineering problem solving are typically incompatible with Gaussian models, exhibiting nonlinear spatial patterns and complex, multiple-point connectivity of extreme values. Stochastic simulation of such phenomena is historically founded on second-order spatial statistical approaches, which are limited in their capacity to model complex spatial uncertainty. The newer multiple-point (MP) simulation framework addresses past limits by establishing the concept of a training image, and, arguably, has its own drawbacks. An alternative to current MP approaches is founded upon new high-order measures of spatial complexity, termed “high-order spatial cumulants.” These are combinations of moments of statistical parameters that characterize non-Gaussian random fields and can describe complex spatial information. Stochastic simulation of complex spatial processes is developed based on high-order spatial cumulants in the high-dimensional space of Legendre polynomials. Starting with discrete Legendre polynomials, a set of discrete orthogonal cumulants is introduced as a tool to characterize spatial shapes. Weighted orthonormal Legendre polynomials define the so-called Legendre cumulants that are high-order conditional spatial cumulants inferred from training images and are combined with available sparse data sets. Advantages of the high-order sequential simulation approach developed herein include the absence of any distribution-related assumptions and pre- or post-processing steps. The method is shown to generate realizations of complex spatial patterns, reproduce bimodal data distributions, data variograms, and high-order spatial cumulants of the data. In addition, it is shown that the available hard data dominate the simulation process and have a definitive effect on the simulated realizations, whereas the training images are only used to fill in high-order relations that cannot be inferred from data. Compared to the MP framework, the proposed approach is data-driven and consistently reconstructs the lower-order spatial complexity in the data used, in addition to high order.  相似文献   
73.
74.
Most precipitation in watersheds is consumed by evaporation, thus techniques to appraise regional evaporation are important to assess the availability of water resources. Many algorithms to estimate evaporation from remotely sensed spectral data have been developed in the recent past. In addition to differences in the physical parameterization of surface fluxes, these algorithms have different solutions for describing spatial variations of the parameters in the soil–vegetation–atmosphere–transfer (SVAT) continuum. In this study, the necessity to spatially distinguish SVAT parameters for computing surface heat fluxes is analysed for the Naivasha watershed in the Kenyan Rift Valley. Landsat Thematic Mapper (TM) spectral data have been used to first delineate the watershed into 15 hydrological units using surface temperature, normalized difference vegetation index and surface albedo as attributes. Thereafter, semi‐empirical relationships between these TM‐based parameters and other SVAT parameters have been applied to compute the spatial variation of SVAT parameters and the associated evaporation from the different hydrological units. The impact of using watershed‐constant or watershed‐distributed SVAT parameters on the fluxes is analysed. The determination of watershed averaged evaporation with area‐aggregated SVAT parameters is feasible without significant loss of accuracy. Distributed evaporation in heterogeneous watersheds, however, can be investigated only with remote sensing flux algorithms that can account for spatially variable air temperature, surface roughness, surface albedo and the stability correction of the temperature profile due to buoyancy. Erroneous results can be expected if area‐aggregated SVAT parameters are used to calculate local evaporation. As most of the recently developed remote sensing flux algorithms are based on areal constant SVAT parameters, direct applications in watersheds are still limited. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
75.
Some selected test areas in the Austrian territory are presented. Free-air and Bouguer anomalies as well as isostatic anomalies (based on Vening Meinesz' isostatic model) are computed. Statistics of these anomalies are given. Also, an extensive comparison between their empirical covariance functions is made and will be discussed. The results show that the isostatic anomalies for our test areas still contain, in general, a trend part.  相似文献   
76.
77.
The Dead Sea shore is affected by major subsidence and sinkholes hazards due to the decrease of the sea level. The frequency of resulting accidents increased during the last four decades. Those phenomena could be at the origin of the catastrophic destruction of a major salt evaporation pond on 22 March 2000. In this paper, we show the main results of eight years of research in gravimetry and radar interferometry devoted to identify potentially hazardous areas, at different scales along the Jordanian Dead Sea coast, from the metric scale (gravimetric approach) to the kilometric one (interferometric approach). To cite this article: D. Closson et al., C. R. Geoscience 335 (2003).  相似文献   
78.
Seismicity and Seismic Hazard in Alexandria (Egypt) and its Surroundings   总被引:3,自引:0,他引:3  
— Alexandria City has suffered great damage due to earthquakes from near and distant sources, both in historical and recent times. Sometimes the source of such damages is not well known. Seismogenic zones such as the Red Sea, Gulf of Aqaba-Dead Sea Hellenic Arc, Suez-Cairo-Alexandria, Eastern-Mediterranean-Cairo-Faiyoum and the Egyptian costal area are located in the vicinity of this city. The Egyptian coastal zone has the lowest seismicity, and therefore, its tectonic setting is not well known. The 1998 Egyptian costal zone earthquake is a moderate complex source. It is composed of two subevents separated by 4 sec. The first subevent initiated at a depth of 28 km and caused a rupture of strike (347°), dip (29°) and slip (125°). The second subevent occurred at a shallower depth (24 km) and has a relatively different focal parameter (strike 334°, dip 60° and slip 60°). The available focal mechanisms strongly support the manifestation of a complex stress regime from the Hellenic Arc into the Alexandria offshore area. In the present study a numerical modeling technique is applied to estimate quantitative seismic hazard in Alexandria. In terms of seismic hazard, both local and remote earthquakes have a tremendous affect on this city. A local earthquake with magnitude Ms = 6.7 at the offshore area gives peak ground acceleration up to 300 cm/sec2. The total duration of shaking expected from such an earthquake is about three seconds. The Fourier amplitude spectra of the ground acceleration reveals that the maximum energy is carried by the low frequency (1–3 Hz), part of the seismic waves. The largest response spectra at Alexandria city is within this frequency band. The computed ground accelerations due to strong earthquakes in the Hellenic Arc, Red Sea and Gulf of Aqaba are very small (less than 10 cm/sec2) although with long duration (up to 3 minutes).  相似文献   
79.
Investigation of rainfall–run-off modelling is an important subject to develop any available means to water supply, which maintains human life such as run-off harvesting method. This study aims to analyse and understand the rainfall–run-off relationship in a part of Babil city, Iraq. Curve number which is a function of land use, soil texture, soil moisture and land slope is used in this study. Remote sensing and GIS are used to analyse the data and to produce the run-off depth map for the study area. Then, the run-off depth is used with rainfall to investigate the relationship between them using linear correlation. This study showed a strong linear relationship between rainfall and run-off (R2 = 0.992). It indicates that in the absence of rainfall data, run-off data can be used to estimate rainfall amount. Also, the study revealed through water balance analysis that there is an average monthly change in storage.  相似文献   
80.
Ground Penetrating Radar (GPR) investigation tools are increasingly used for real-time detection of underground utilities. Background noise is an annoying problem, because it sometimes masks the reflection from objects of interest. This study introduces an efficient background removal algorithm, which is so simple that it can be incorporated into GPR logging devices. The algorithm is based on the recently published outliers-out algorithm for stacking seismic data. Experiments conducted on both synthetic and field GPR data show that proposed background removal algorithm yields much better results than the commonly used average trace subtraction algorithm in a relatively comparable computational time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号