首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
  国内免费   1篇
测绘学   3篇
大气科学   8篇
地球物理   11篇
地质学   13篇
海洋学   9篇
天文学   3篇
自然地理   12篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2016年   1篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1969年   1篇
排序方式: 共有59条查询结果,搜索用时 781 毫秒
21.
22.
Scaling relationships between seismic moment, rupture length, and rupture width have been examined. For this purpose, the data from several previous studies have been merged into a database containing more than 550 events. For large earthquakes, a dependence of scaling on faulting mechanism has been found. Whereas small and large dip-slip earthquakes scale in the same way, the self-similarity of earthquakes breaks down for large strike-slip events. Furthermore, no significant differences in scaling could be found between normal and reverse earthquakes and between earthquakes from different regions. Since the thickness of the seismogenic layer limits fault widths, most strike-slip earthquakes are limited to rupture widths of between 15 and 30 km while the rupture length is not limited. The aspect ratio of dip-slip earthquakes is similar for all earthquake sizes. Hence, the limitation in rupture width seems to control the maximum possible rupture length for these events. The different behaviour of strike-slip and dip-slip earthquakes can be explained by rupture dynamics and geological fault growth. If faults are segmented, with the thickness of the seismogenic layer controlling the length of each segment, strike-slip earthquakes might rupture connected segments more easily than dip-slip events, and thus could produce longer ruptures than dip-slip events of the same width  相似文献   
23.
通过矿相学和电子探针研究发现,新疆喀拉通克矿床铂族矿物以Pt、Pd、Ni的碲化物、铋化物固溶体系列矿物为主,矿物分布不均匀,主要分布在块状矿石的磁黄铁矿、镍黄铁矿、黄铜矿等硫化物中,粒径多为3~5μm。矿物组合和相图分析显示,多数铂族矿物为岩浆熔离成因,个别矿物颗粒可能为热液叠加成矿的产物。岩浆中S不饱和时,PGE可能形成铂铑合金,局部氧逸度升高导致铬铁矿、磁铁矿等氧化物结晶,合金被早期结晶的硅酸盐矿物和氧化物包裹。硫化物熔离大量的PGE进入硫化物熔体,伴随硫化物熔体的分异,部分铂族矿物被包裹在单硫化物固溶体中;高温条件下结晶的Pd(+Pt,Ni)-Bi-Te固溶体系列矿物不稳定,随着温度的降低,Pd(+Pt,Ni)-Bi-Te固溶体出溶形成上述铂族矿物组合,MSS裂解铂族矿物被排出,岩浆热液可能形成少量具热液成因特征的铂族矿物。  相似文献   
24.
Considerable progress has been made in integrating carbon, nutrient, phytoplankton and zooplankton dynamics into global-scale physical climate models. Scientists are exploring ways to extend the resolution of the biosphere within these Earth system models (ESMs) to include impacts on global distribution and abundance of commercially exploited fish and shellfish. This paper compares different methods for modeling fish and shellfish responses to climate change on global and regional scales. Several different modeling approaches are considered including: direct applications of ESM’s, use of ESM output for estimation of shifts in bioclimatic windows, using ESM outputs to force single- and multi-species stock projection models, and using ESM and physical climate model outputs to force regional bio-physical models of varying complexity and mechanistic resolution. We evaluate the utility of each of these modeling approaches in addressing nine key questions relevant to climate change impacts on living marine resources. No single modeling approach was capable of fully addressing each question. A blend of highly mechanistic and less computationally intensive methods is recommended to gain mechanistic insights and to identify model uncertainties.  相似文献   
25.
Apatite incorporates variable and significant amounts of halogens (mainly F and Cl) in its crystal structure, which can be used to determine the initial F and Cl concentrations of magmas. The amount of chlorine in the apatite lattice also exerts an important compositional control on the degree of fission‐track annealing. Chlorine measurements in apatite have conventionally required electron probe microanalysis (EPMA). Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) is increasingly used in apatite fission‐track dating to determine U concentrations and also in simultaneous U‐Pb dating and trace element measurements of apatite. Apatite Cl measurements by ICP‐MS would remove the need for EPMA but the high (12.97 eV) first ionisation potential makes analysis challenging. Apatite Cl data were acquired using two analytical set‐ups: a Resonetics M‐50 193 nm ArF Excimer laser coupled to an Agilent 7700× quadrupole ICP‐MS (using a 26 μm spot with an 8 Hz repetition rate) and a Photon Machines Analyte Excite 193 nm ArF Excimer laser coupled to a Thermo Scientific iCAP Qc (using a 30 μm spot with a 4 Hz repetition rate). Chlorine concentrations were determined by LA‐ICP‐MS (1140 analyses in total) for nineteen apatite occurrences, and there is a comprehensive EPMA Cl and F data set for 13 of the apatite samples. The apatite sample suite includes different compositions representative of the range likely to be encountered in natural apatites, along with extreme variants including two end‐member chlorapatites. Between twenty‐six and thirty‐nine isotopes were determined in each apatite sample corresponding to a typical analytical protocol for integrated apatite fission track (U and Cl contents) and U‐Pb dating, along with REE and trace element measurements. 35Cl backgrounds (present mainly in the argon gas) were ~ 45–65 kcps in the first set‐up and ~ 4 kcps in the second set‐up. 35Cl background‐corrected signals ranged from ~ 0 cps in end‐member fluorapatite to up to ~ 90 kcps in end‐member chlorapatite. Use of a collision cell in both analytical set‐ups decreased the low mass sensitivity by approximately an order of magnitude without improving the 35Cl signal‐to‐background ratio. A minor Ca isotope was used as the internal standard to correct for drift in instrument sensitivity and variations in ablation volume during sessions. The 35Cl/43Ca values for each apatite (10–20 analyses each) when plotted against the EPMA Cl concentrations yield excellently constrained calibration relationships, demonstrating the suitability of the analytical protocol and that routine apatite Cl measurements by ICP‐MS are achievable.  相似文献   
26.
Dansgaard–Oeschger (D–O) cycles had far-reaching effects on Northern Hemisphere and tropical climate systems during the last glacial period, yet the climatic response to D–O cycles in western North America is controversial, especially prior to 55 ka. We document changes in precipitation along the western slope of the central Sierra Nevada during early Marine Oxygen Isotope Stages (MIS) 3 and 4 (55–67 ka) from a U-series dated speleothem record from McLean's Cave. The timing of our multi-proxy geochemical dataset is coeval with D–O interstadials (15–18) and stadials, including Heinrich Event 6. The McLean's Cave stalagmite indicates warmer and drier conditions during Greenland interstadials (GISs 15–18), signified by elevated δ18O, δ13C, reflectance, and trace element concentrations, and less radiogenic 87Sr/86Sr. Our record extends evidence of a strong linkage between high-latitude warming and reduced precipitation in western North America to early MIS 3 and MIS 4. This record shows that the linkage persists in diverse global climate states, and documents the nature of the climatic response in central California to Heinrich Event 6.  相似文献   
27.
Geographical information systems (GIS) are important tools in coastal research and management. Coastal GIS applications involve special challenges, because the coastal environment is a complex transitional system between the terrestrial and marine realms. Also acquisition methods and responsibilities for spatial data (and thus their properties) change at the shoreline. This article explores the consequences of this land-sea divide for coastal terrain modelling. We study how methods designed for terrestrial environments can be used to create integrated raster coastal terrain models (CTMs) from coarse elevation and depth data. We focus on shore slopes, because many particularities of coastal terrain and the data which describe it as well as the resulting problems are concentrated in the shore zone. Based on shorelines, terrestrial contours, depth contours and depth points, we used the ANUDEM algorithm to interpolate CTMs at different spatial resolutions, with and without drainage enforcement, for two test areas in a highly complex archipelago coast. Slope aspect and gradient rasters were derived from the CTMs using Horn's algorithm. Values were assigned from the slope rasters to thousands of points along the test areas' shorelines in different ways. Shore slope gradients and aspects were also calculated directly from the shorelines and contours. These modelled data were compared to each other and to field-measured shore profiles using a combination of qualitative and quantitative methods. As far as the coarse source data permitted, the interpolation and slope calculations delivered good results at fine spatial resolutions. Vector-based slope calculations were very sensitive to quality problems of the source data. Fine-resolution raster data were consequently found most suitable for describing shore slopes from coarse coastal terrain data. Terrestrial and marine parts of the CTMs were subject to different errors, and modelling methods and parameters had different consequences there. Thus, methods designed for terrestrial applications can be successfully used for coastal terrain modelling, but the choice of methods and parameters and the interpretation of modelling results require special attention to the differences of terrestrial and marine topography and data.  相似文献   
28.
We analyzed a combination of airborne and terrestrial LiDAR, high‐resolution photography, seismic, and acoustic data in order to gain insights into the initiation, dynamics, and talus deposition of a complex rock fall. A large (46 700 m3) rock fall originated from near Ahwiyah Point in eastern Yosemite Valley and fell a total of 730 m to the valley floor on 28 March 2009. Analyses of remote sensing, seismic, and acoustic data were integrated to reconstruct the rock fall, which consisted of (1) the triggering of a 25 400 m3 rock block in an area of intersecting and sometimes highly weathered joint planes, (2) the sliding and subsequent ballistic trajectory of the block from a steeply dipping ledge, (3) dislodging of additional rock from the cliff surface from beneath the rock fall source area, (4) a mid‐cliff ledge impact that detached a volume of rock nearly equivalent in volume to the initial block, (5) sliding of the deteriorating rock mass down the remainder of the cliff, and (6) final impact at the base of the cliff that remobilized the existing talus downward and outward and produced an airblast that knocked down hundreds of trees. The depositional geomorphology indicates that the porosity of the fresh talus is significantly lower than that expected for typical blocky talus slopes, likely because the rock debris from this event was pulverized into smaller, more poorly sorted fragments and densified via dynamic compaction when compared to less energetic, fragmental‐type rock falls. These results suggest that accumulation of individual rock‐fall boulders tends to steepen talus slopes, whereas large, energetic rock falls tend to flatten them. Detachment and impact signals were recorded by seismic and acoustic instruments and highlight the potential use of this type of instrumentation for generalized rock fall monitoring, while LiDAR and photography data were able to quantify the cliff geometry, rock fall volume, source and impact locations, and geomorphological changes to the cliff and talus. Published in 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   
29.
Little is known about in-canopy processes that may alter forest–atmosphere exchanges of trace gases and aerosols. To improve our understanding of in-canopy mixing, we use large-eddy simulation to study the effect of scalar source/sink distributions on scalar concentration moments, fluxes, and correlation coefficients within and above an ideal forest canopy. Scalars are emitted from: (1) the ground, (2) the canopy, and (3) both the ground and the canopy; a scalar is also deposited onto the canopy. All scalar concentration moments, fluxes, and correlation coefficients are affected by the source location/distribution, as is the scalar segregation intensity. We conclude that vertical source/sink distribution has a profound impact on scalar concentration profiles, fluxes, correlation coefficient, and scalar segregation.  相似文献   
30.
The importance of ecological management for reducing the vulnerability of biodiversity to climate change is increasingly recognized, yet frameworks to facilitate a structured approach to climate adaptation management are lacking. We developed a conceptual framework that can guide identification of climate change impacts and adaptive management options in a given region or biome. The framework focuses on potential points of early climate change impact, and organizes these along two main axes. First, it recognizes that climate change can act at a range of ecological scales. Secondly, it emphasizes that outcomes are dependent on two potentially interacting and countervailing forces: (1) changes to environmental parameters and ecological processes brought about by climate change, and (2) responses of component systems as determined by attributes of resistance and resilience. Through this structure, the framework draws together a broad range of ecological concepts, with a novel emphasis on attributes of resistance and resilience that can temper the response of species, ecosystems and landscapes to climate change. We applied the framework to the world’s largest remaining Mediterranean-climate woodland, the ‘Great Western Woodlands’ of south-western Australia. In this relatively intact region, maintaining inherent resistance and resilience by preventing anthropogenic degradation is of highest priority and lowest risk. Limited, higher risk options such as fire management, protection of refugia and translocation of adaptive genes may be justifiable under more extreme change, hence our capacity to predict the extent of change strongly impinges on such management decisions. These conclusions may contrast with similar analyses in degraded landscapes, where natural integrity is already compromised, and existing investment in restoration may facilitate experimentation with higher risk?options.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号