首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   13篇
  国内免费   16篇
测绘学   13篇
大气科学   43篇
地球物理   108篇
地质学   86篇
海洋学   120篇
天文学   10篇
综合类   11篇
自然地理   14篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   8篇
  2019年   8篇
  2018年   12篇
  2017年   14篇
  2016年   20篇
  2015年   16篇
  2014年   22篇
  2013年   47篇
  2012年   25篇
  2011年   26篇
  2010年   31篇
  2009年   19篇
  2008年   19篇
  2007年   23篇
  2006年   11篇
  2005年   24篇
  2004年   13篇
  2003年   12篇
  2002年   3篇
  2001年   8篇
  2000年   7篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有405条查询结果,搜索用时 15 毫秒
101.
Aerosols affect precipitation by modifying cloud properties such as cloud droplet number concentration (CDNC). Aerosol effects on CDNC depend on aerosol properties such as number concentration, size spectrum, and chemical composition. This study focuses on the effects of aerosol chemical composition on CDNC and, thereby, precipitation in a mesoscale cloud ensemble (MCE) driven by deep convective clouds. The MCE was observed during the 1997 department of energy's Atmospheric Radiation Measurement (ARM) summer experiment. Double-moment microphysics with explicit nucleation parameterization, able to take into account those three properties of aerosols, is used to investigate the effects of aerosol chemical composition on CDNC and precipitation. The effects of aerosol chemical compositions are investigated for both soluble and insoluble substances in aerosol particles. The effects of soluble substances are examined by varying mass fractions of two representative soluble components of aerosols in the continental air mass: sulfate and organics. The increase in organics with decreasing sulfate lowers critical supersaturation (Sc) and leads to higher CDNC. Higher CDNC results in smaller autoconversion of cloud liquid to rain. This provides more abundant cloud liquid as a source of evaporative cooling, leading to more intense downdrafts, low-level convergence, and updrafts. The resultant stronger updrafts produce more condensation and thus precipitation, as compared to the case of 100% sulfate aerosols. The conventional assumption of sulfate aerosol as a surrogate for the whole aerosol mass can be inapplicable for the case with the strong sources of organics. The less precipitation is simulated when an insoluble substance replaces organics as compared to when it replaces sulfate. When the effects of organics on the surface tension of droplet and solution term in the Köhler curve are deactivated by the insoluble substance, Sc is raised more than when the effects of sulfate on the solution term are deactivated by the insoluble substance. This leads to lower CDNC and, thus, larger autoconversion of cloud liquid to rain, providing less abundant cloud liquid as a source of evaporative cooling. The resultant less evaporative cooling produces less intense downdrafts, weaker low-level convergence, updrafts, condensation and, thereby, less precipitation in the case where organics is replaced by the insoluble substance than in the case where sulfate is replaced by the insoluble substance. The variation of precipitation caused by the change in the mass fraction between the soluble and insoluble substances is larger than that caused by the change in the mass fraction between the soluble substances.  相似文献   
102.
This paper briefly presents the West African Monsoon (WAM) Modeling and Evaluation Project (WAMME) and evaluates WAMME general circulation models’ (GCM) performances in simulating variability of WAM precipitation, surface temperature, and major circulation features at seasonal and intraseasonal scales in the first WAMME experiment. The analyses indicate that models with specified sea surface temperature generally have reasonable simulations of the pattern of spatial distribution of WAM seasonal mean precipitation and surface temperature as well as the averaged zonal wind in latitude-height cross-section and low level circulation. But there are large differences among models in simulating spatial correlation, intensity, and variance of precipitation compared with observations. Furthermore, the majority of models fail to produce proper intensities of the African Easterly Jet (AEJ) and the tropical easterly jet. AMMA Land Surface Model Intercomparison Project (ALMIP) data are used to analyze the association between simulated surface processes and the WAM and to investigate the WAM mechanism. It has been identified that the spatial distributions of surface sensible heat flux, surface temperature, and moisture convergence are closely associated with the simulated spatial distribution of precipitation; while surface latent heat flux is closely associated with the AEJ and contributes to divergence in AEJ simulation. Common empirical orthogonal functions (CEOF) analysis is applied to characterize the WAM precipitation evolution and has identified a major WAM precipitation mode and two temperature modes (Sahara mode and Sahel mode). Results indicate that the WAMME models produce reasonable temporal evolutions of major CEOF modes but have deficiencies/uncertainties in producing variances explained by major modes. Furthermore, the CEOF analysis shows that WAM precipitation evolution is closely related to the enhanced Sahara mode and the weakened Sahel mode, supporting the evidence revealed in the analysis using ALMIP data. An analysis of variability of CEOF modes suggests that the Sahara mode leads the WAM evolution, and divergence in simulating this mode contributes to discrepancies in the precipitation simulation.  相似文献   
103.
Long-term scenarios developed by integrated assessment models are used in climate research to provide an indication of plausible long-term emissions of greenhouse gases and other radiatively active substances based on developments in the global energy system, land-use and the emissions associated with these systems. The phenomena that determine these long-term developments (several decades or even centuries) are very different than those that operate on a shorter time-scales (a few years). Nevertheless, in the literature, we still often find direct comparisons between short-term observations and long-term developments that do not take into account the differing dynamics over these time scales. In this letter, we discuss some of the differences between the factors that operate in the short term and those that operate in the long term. We use long-term historical emissions trends to show that short-term observations are very poor indicators of long-term future emissions developments. Based on this, we conclude that the performance of long-term scenarios should be evaluated against the appropriate, corresponding long-term variables and trends. The research community may facilitate this by developing appropriate data sets and protocols that can be used to test the performance of long-term scenarios and the models that produce them.  相似文献   
104.
Ground water from springs and public supply wells was investigated for hydrochemistry and environmental isotopes of 3H, 18O and D in Jeju volcanic island, Korea. The wells are completed in a basaltic aquifer and the upper part of hydrovolcanic sedimentary formation. Nitrate contamination is conspicuous in the coastal area where most of the samples have nitrate concentrations well above 1 mg NO3 N/l. Agricultural land use seems to have a strong influence on the distribution of nitrate in ground water. Comparison of stable isotopic compositions of precipitation and ground water show that ground water mostly originates from rainy season precipitation without significant secondary modification and that local recharge is dominant. 3H concentration of ground water ranged from nearly zero to 5 TU and is poorly correlated with vertical location of well screens. The occurrence of the 3H‐free, old ground water is due to the presence of low permeability layers near the boundary of the basaltic aquifer and the hydrovolcanic sedimentary formation, which significantly limits ground water flow from the upper basaltic aquifer. The old ground water exhibited background‐level nitrate concentrations despite high nitrate loadings, whereas young ground water had considerably higher nitrate concentrations. This correlation of 3H and nitrate concentration may be ascribed to the history of fertilizer use that has increased dramatically since the early 1960s in the island. This suggests that 3H can be used as a qualitative indicator for aquifer vulnerability to nitrate contamination. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
105.
The complexity of determining strain associated with shear modulus and damping ratio in torsional tests has been resolved by means of several approaches. The stress integration approach is adequate when generating the plots of equivalent radius ratio versus strain more effectively over any range of strains in resonant column and torsional shear (RC/TS) tests. The stress integration approach was applied for hyperbolic, modified hyperbolic, and Ramberg–Osgood models in evaluating damping ratio. This study showed that using a single value of equivalent radius ratio in evaluating damping ratio is not appropriate. The combined hysteretic‐nonviscous damping model was developed and employed to consider the increased damping behavior at small strains using the stress integration approach. The results suggest that adding viscous behavior has no significant effect strain calculations in RC/TS testing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
106.
This paper reports the results of an investigation into flood simulation by areal rainfall estimated from the combination of gauged and radar rainfalls and a rainfall–runoff model on the Anseong‐cheon basin in the southern part of Korea. The spatial and temporal characteristics and behaviour of rainfall are analysed using various approaches combining radar and rain gauges: (1) using kriging of the rain gauge alone; (2) using radar data alone; (3) using mean field bias (MFB) of both radar and rain gauges; and (4) using conditional merging technique (CM) of both radar and rain gauges. To evaluate these methods, statistics and hyetograph for rain gauges and radar rainfalls were compared using hourly radar rainfall data from the Imjin‐river, Gangwha, rainfall radar site, Korea. Then, in order to evaluate the performance of flood estimates using different rainfall estimation methods, rainfall–runoff simulation was conducted using the physics‐based distributed hydrologic model, Vflo?. The flood runoff hydrograph was used to compare the calculated hydrographs with the observed one. Results show that the rainfall field estimated by CM methods improved flood estimates, because it optimally combines rainfall fields representing actual spatial and temporal characteristics of rainfall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
107.
108.
Surface and subsurface water samples for 137Cs and 239,240Pu analysis were collected in the East Sea (Sea of Japan) during August 1993. The 137Cs levels of the surface waters are quite homogeneous in the East Sea (average = 3.1±0.2 mBq kg−1). The 239,240Pu levels vary from 6 to 10 μBq kg−1 in the surface. 239,240Pu to 137Cs ratios in the surface water are within 0.002 to 0.003. The East Sea may be regarded as a part of the North Pacific Ocean in terms of 137Cs dispersal in the surface, where the 137Cs contents of the surface seawater seem to be controlled primarily by the atmospheric input. However, since our sampling was made just two months prior to the widely publicized Russian dumping incident on the 17th October 1993, our measurements may provide background data to assess the immediate impact of the Russian dumping on the levels of 137Cs and 239,240Pu in the East Sea.  相似文献   
109.
This paper proposes a dynamic centrifuge model test method for the accurate simulation of the behaviours of a liquid storage tank with different types of foundations during earthquakes. The method can be used to determine the actual stress conditions of a prototype storage‐tank structure. It was used in the present study to investigate the soil‐foundation‐structure interactions of a simplified storage tank under two different earthquake motions, which were simulated using a shaking table installed in a centrifuge basket. Three different types of foundations were considered, namely, a shallow foundation, a slab on the surface of the ground connected to piles and a slab with disconnected piles. The test results were organised to compare the ground surface and foundation motions, the slab of foundation and top of structure motions and the horizontal and vertical motions of the slab, respectively. These were used to establish the complex dynamic behaviours of tank models with different foundations. The effects of soil–foundation–structure interaction with three foundation conditions and two different earthquake motions are focused and some important factors, that should be considered for future designs are also discussed in this research. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
110.
Ocean Science Journal - This study sought to examine the characteristics and patterns of marine algae community changes in Wangdol-cho in order to establish a theoretical basis for the development...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号