首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   0篇
大气科学   7篇
地球物理   21篇
地质学   29篇
海洋学   12篇
自然地理   8篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   5篇
  2003年   1篇
  2002年   6篇
  1999年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1972年   1篇
排序方式: 共有77条查询结果,搜索用时 421 毫秒
61.
Maturity and source rock potential of organic rich beds in the Triassic Schei Point Group in the Sverdrup Basin, Arctic Canada have been investigated using reflected light microscopy and the results are compared with other maturity parameters determined geochemically (i.e. Rock Eval, and biomarker maturation parameters). The samples evaluated belong to the Eden Bay Member of the Hoyle Bay Formation and contain a predominance of marine algal material, in the form of Tasmanales, and dinoflagellates, along with mixed terrestrial organics.The rock matrix is dominantly carbonate with some shaly input, indicating that the rocks were deposited in an iron-poor highly euxinic environment. With few exceptions there is good agreement between parameters,determined using microscopy; namely %Ro, λmax and and geochemical parameters, Tmax, HI,
steranes, C29 steranes. The ternary diagram showing the abundance of normalized C27, C28 and C29 regular steranes indicates a mostly marine depositional environment for the Schei Point source rock. This is confirmed by the abundance of marine fauna and flora in these samples.Analytical results from several different techniques indicate that the source rocks become more mature from the margin towards the axis of the Sverdrup Basin. This is due, in part, to the increase in overburden of sediments in the axis of the basin. Also the high thermal conductivity of salt has strongly influenced the maturity of Schei Point source rocks over the crest of the salt cored structures, i.e. Well Hazen F-54, and the proximity of salt has enhanced maturation levels at Well Rock Point J-43. The sections investigated were also considered to have an excellent gas potential due to their higher than average TOC content.  相似文献   
62.
We have conducted the first detailed survey of the recording of a geomagnetic reversal at an ultra-fast spreading center. The survey straddles the Brunhes/Matuyama reversal boundary at 19°30 S on the east flank of the East Pacific Rise (EPR), which spreads at the half rate of 82 mm yr-1. In the vicinity of the reversal boundary, we performed a three-dimensional inversion of the surface magnetic field and two-dimensional inversions of several near-bottom profiles including the effects of bathymetry. The surface inversion solution shows that the polarity transition is sharp and linear, and less than 3–4 km wide. These values constitute an upper bound because the interpretation of marine magnetic anomalies observed at the sea surface is limited to wavelengths greater than 3–4 km. The polarity transition width, which represents the distance over which 90% of the change in polarity occurs, is narrow (1.5–2.1 km) as measured on individual 2-D inversion profiles of near-bottom data. This suggests a crustal zone of accretion only 3.0–4.2 km wide. Our method offers little control on accretionary processes below layer 2B because the pillow and the dike layers in young oceanic crust are by far the most significant contributors to the generation of marine magnetic anomalies. The Deep-Tow instrument package was used to determine in situ the polarity of individual volcanoes and fault scarps in the same area. We were able to make 96 in situ polarity determinations which allowed us to locate the scafloor transition boundary which separates positively and negatively magnetized lava flows. The shift between the inversion transition boundary and the seafloor transition boundary can be used to obtain an estimate of the width of the neovolcanic zone of 4–10 km. This width is significantly larger than the present width of the neovolcanic zone at 19°30 S as documented from near-bottom bathymetric and photographic data (Bicknell et al., 1987), and also larger than the width of the neovolcanic zone at 21° N on the EPR as inferred by the three-dimensional inversion of near-bottom magnetic data (Macdonald et al., 1983). The eruption of positively magnetized lava flows over negatively magnetized crust from the numerous volcanoes present in the survey area and episodic flooding of the flanks of the ridge axis by extensive outpourings of lava erupting from a particularly robust magma chamber may result in a widened neovolcanic zone. We studied the relationship between spreading rate and polarity transition widths obtained from 2-D inversions of the near-bottom magnetic field over various spreading centers. The mean transition width corrected for the time necessary for the reversal to occur decreases with increasing spreading rate but our data set is still too sparse to draw firm conclusions from these observations. Perhaps more interesting is the fact that the range of the measured transition widths also decreases with spreading rate. In the light of these results, we propose a new model for the spreading rate dependency of polarity transition widths. At slow spreading centers, the zone of dike injection is narrow but the locus of crustal accretion is prone to small lateral shifts depending on the availability of magmatic sources, and the resulting polarity transition widths can be narrow or wide. At intermediate spreading centers, the zone of crustal accretion is narrow and does not shift laterally, which leads to narrower transition widths on the average than at slow spreading centers. An intermediate, or even a slow spreading center, may behave like a fast or hot-spot dominated ridge for short periods of time when its magmatic budget is increased due to melting events in the upper mantle. At fast spreading centers, the zone of dike injection is narrow, but the large magmatic budget of fast spreading centers may result in occasional extensive flows less than a few tens of meters thick from the axis and off-axis volcanic cones. These thin flows will not significantly contribute to the polarity transition widths, which remain narrow, but they may greatly increase the width of the neovolcanic zone. Finally the gabbro layer in the lower section of oceanic crust may also contribute to the observed polarity transition widths but this contribution will only become significant in older oceanic crust (50–100 m.y.).  相似文献   
63.
Significant oil and gas accumulations occur in and around Lougheed Island, Arctic Canada, where hydrocarbon prospectivity is controlled by potential source rock distribution and composition. The Middle to Upper Triassic rocks of the Schei Point Group (e.g. Murray Harbour and Hoyle Bay formations) contain a mixture of Types I and II organic matter (Tasmanales marine algae, amorphous fluorescing bituminite). These source rocks are within the oil generation zone and have HI values up to 600 mg HC/g Corg. The younger source rocks of the Lower Jurassic Jameson Bay and the Upper Jurassic Ringnes formations contain mainly gas-prone Type II/III organic matter and are marginally mature. Vitrinite reflectance profiles suggest an effective geothermal gradient essentially similar to the present-day gradient (20 to 30°C/km). Maturation gradients are low, ranging from 0.125 to 0.185 log%Ro/km. Increases in subsidence rate in the Early Cretaceous suggest that the actual heat flow history was variable and has probably diminished from that time. The high deposition rates of the Christopher Formation shales coincide with the main phase of rifting in Aptian-Albian times. Uplift and increased sediment supply in the Maastrichtian resulted in a new sedimentary and tectonic regime, which culminated in the final phase of the Eurekan Orogeny. Burial history models indicate that hydrocarbon generation in the Schei Point Group took place during rifting in Early Cretaceous, long before any Eurekan deformation.  相似文献   
64.
The Australian-Antarctic Discordance (AAD) is an anomalously deep and rugged zone of the Southeast Indian Ridge (SEIR) between 120° E and 128° E. The AAD contains the boundary between the Indian Ocean and Pacific Ocean isotopic provinces. We have analyzed SeaMarc II bathymetric and sidescan sonar data along the SEIR between 123° E and 128° E. The spreading center in the AAD, previously known to be divided into several transform-bounded sections, is further segmented by nontransform discontinuities which separate distinct spreading cells. Near the transform which bounds the AAD to the east, there is a marked change in the morphology of the spreading center, as well as in virtually every measured geochemical parameter. The spreading axis within the Discordance lies in a prominent rift valley similar to that observed along the Mid-Atlantic Ridge, although the full spreading rate within the AAD is somewhat faster than that of slow-spreading centers (~ 74 mm a–1 vs. 0–40 mm a–1). The AAD rift valleys show a marked contrast with the axial high that characterizes the SEIR east of the AAD. This change in axial morphology is coincident with a large (~ 1 km) deepening of the spreading axis. The segmentation characteristics of the AAD are analogous to those of the slow-spreading Mid-Atlantic Ridge, as opposed to the SEIR east of the AAD, which exhibits segmentation characteristics typical of fast-spreading centers. Thus, the spreading center within and east of the AAD contains much of the range of global variability in accretionary processes, yet it is a region free from spreading rate variations and the volumetric and chemical influences of hotspots. We suggest that the axial morphology and segmentation characteristics of the AAD spreading centers are the result of the presence of cooler than normal mantle. The presence of a cool mantle and the subsequent diminution of magma supply at a constant spreading rate may engender the creation of anomalously thick brittle lithosphere within the AAD, a condition which favor, the creation of an axial rift valley and of thin oceanic crust, in agreement with petrologic studies. The morphologies of transform and non-transform discontinuities within the Discordance also possess characteristics consistent with the creation of anomalously thick lithosphere in the region. The upper mantle viscosity structure which results from lower mantle temperatures and melt production rates may account for the similarity in segmentation characteristics between the AAD and slow-spreading centers. The section of the AAD which overlies the isotopic boundary is associated with chaotic seafloor which may be caused by an erratic pattern of magmatism and/or complex deformation associated with mantle convergence. Finally, the pattern of abyssal hill terrain within a portion of the AAD supports previous models for the formation of abyssal hills at intermediate- and slow-spreading ridges, and provides insights into how asymmetric spreading is achieved in this region.  相似文献   
65.
Overlapping spreading centers (OSCs) are a type of ridge axis discontinuity found along intermediate and fast spreading centers. The ridges at these locations overlap and curve towards each other. and are separated by an elongate overlap basin. A high resolution Deep-Tow survey was conducted over the 12°54 N OSC (offset 1.6 km) on the East Pacific Rise in order to study the structure of a small OSC on a fine scale. A detailed tectonic study and Deep-Tow 3-D magnetic inversion were performed on the data. Towards the tips of both limbs, the apparent age of lava flows increases, the density of exposed faults and fissures increases, and the axial graben loses definition and disappears. No active hydrothermal vents were detected in the area. These observations suggest that the magmatic budget steadily decreases along axis approaching and OSC, even where the offset is small. In contrast with OSCs which have a large offset (>5 km), the 3-D magnetic inversion solution for this OSC produced no evidence for highly magnetized areas near the tip of either spreading center.  相似文献   
66.
This paper presents an original size-structured mathematical model of the energy flow through marine ecosystems, based on established ecological and physiological processes and mass conservation principles. The model is based on a nonlocal partial differential equation which represents the transfer of energy in both time and body weight (size) in marine ecosystems. The processes taken into account include size-based opportunistic trophic interactions, competition for food, allocation of energy between growth and reproduction, somatic and maturity maintenance, predatory and starvation mortality. All the physiological rates are temperature-dependent. The physiological bases of the model are derived from the dynamic energy budget theory. The model outputs the dynamic size-spectrum of marine ecosystems in term of energy content per weight class as well as many other size-dependent diagnostic variables such as growth rate, egg production or predation mortality.In stable environmental conditions and using a reference set of parameters derived from empirical studies, the model converges toward a stationary linear log–log size-spectrum with a slope equal to −1.06, which is consistent with the values reported in empirical studies. In some cases, the distribution of the largest sizes departs from the stationary linear solution and is slightly curved downward. A sensitivity analysis to the parameters is conducted systematically. It shows that the stationary size-spectrum is not very sensitive to the parameters of the model. Numerical simulations of the effects of temperature and primary production variability on marine ecosystems size-spectra are provided in a companion paper [Maury, O., Shin, Y.-J., Faugeras, B., Ben Ari, T., Marsac, F., 2007. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 2: simulations. Progress in Oceanography, doi:10.1016/j.pocean.2007.05.001].  相似文献   
67.
Heat as a tracer in fractured porous aquifers is more sensitive to fracture-matrix processes than a solute tracer. Temperature evolution as a function of time can be used to differentiate fracture and matrix characteristics. Experimental hot (50 °C) and cold (10 °C) water injections were performed in a weathered and fractured granite aquifer where the natural background temperature is 30 °C. The tailing of the hot and cold breakthrough curves, observed under different hydraulic conditions, was characterized in a log–log plot of time vs. normalized temperature difference, also converted to a residence time distribution (normalized). Dimensionless tail slopes close to 1.5 were observed for hot and cold breakthrough curves, compared to solute tracer tests showing slopes between 2 and 3. This stronger thermal diffusive behavior is explained by heat conduction. Using a process-based numerical model, the impact of heat conduction toward and from the porous rock matrix on groundwater heat transport was explored. Fracture aperture was adjusted depending on the actual hydraulic conditions. Water density and viscosity were considered temperature dependent. The model simulated the increase or reduction of the energy level in the fracture-matrix system and satisfactorily reproduced breakthrough curves tail slopes. This study shows the feasibility and utility of cold water tracer tests in hot fractured aquifers to boost and characterize the thermal matrix diffusion from the matrix toward the flowing groundwater in the fractures. This can be used as complementary information to solute tracer tests that are largely influenced by strong advection in the fractures.  相似文献   
68.
69.
Accurate forecasting of river flows is one of the most important applications in hydrology, especially for the management of reservoir systems. To capture the seasonal variations in river flow statistics, this paper develops a robust modeling approach to identify and to estimate periodic autoregressive (PAR) model in the presence of additive outliers. Since the least squares estimators are not robust in the presence of outliers, we suggest a robust estimation based on residual autocovariances. A genetic algorithm with Bayes information criterion is used to identify the optimal PAR model. The method is applied to average monthly and quarter-monthly flow data (1959–2010) for the Garonne river in the southwest of France. Results show that the accuracy of forecasts is improved in the robust model with respect to the unrobust model for the quarter-monthly flows. By reducing the number of parameters to be estimated, the principle of parsimony favors the choice of the robust approach.  相似文献   
70.
Inner boundary conditions describe the interaction of groundwater wells with the surrounding aquifer during pumping and are associated with well-skin damage that limits water production and water derived from wellbore storage. Pumping test evaluations of wells during immediate and early time flow require assignment of inner boundary conditions. Originally, these concepts were developed for vertical well screens, and later transferred to wellbores intersecting highly conductive structures, such as preferential flow zones in fractured and karstic systems. Conceptual models for pumping test analysis in complex bedrock geology are often simplified. Classic analytical solutions generally lump or ignore conditions that limit or enhance well productivity along the well screen at the onset of pumping. Numerical solutions can represent well drawdowns in complex geological settings, such as karst systems, more precisely than many analytical solutions by accounting for additional physical processes and avoiding assumptions and simplifications. Suitable numerical tools for flow simulations in karst are discrete pipe-continuum models that account for various physical processes such as the transient hydraulics of wellbores intersecting highly conductive structures during pumping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号