首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4345篇
  免费   175篇
  国内免费   97篇
测绘学   89篇
大气科学   473篇
地球物理   1105篇
地质学   1376篇
海洋学   740篇
天文学   513篇
综合类   53篇
自然地理   268篇
  2023年   14篇
  2022年   25篇
  2021年   61篇
  2020年   69篇
  2019年   85篇
  2018年   160篇
  2017年   154篇
  2016年   171篇
  2015年   121篇
  2014年   204篇
  2013年   275篇
  2012年   176篇
  2011年   260篇
  2010年   253篇
  2009年   249篇
  2008年   235篇
  2007年   221篇
  2006年   199篇
  2005年   165篇
  2004年   137篇
  2003年   143篇
  2002年   149篇
  2001年   97篇
  2000年   87篇
  1999年   69篇
  1998年   58篇
  1997年   56篇
  1996年   41篇
  1995年   51篇
  1994年   32篇
  1993年   36篇
  1992年   31篇
  1991年   24篇
  1990年   27篇
  1989年   22篇
  1988年   21篇
  1987年   36篇
  1986年   23篇
  1985年   31篇
  1984年   42篇
  1983年   44篇
  1982年   37篇
  1981年   32篇
  1980年   36篇
  1979年   19篇
  1978年   20篇
  1977年   23篇
  1975年   19篇
  1974年   16篇
  1973年   15篇
排序方式: 共有4617条查询结果,搜索用时 343 毫秒
101.
Non-LTE synthetic spectra derived from a detailed analysis of the formation of the CN (0, 0) λ13883 Å spectrum are compared with center-limb photoelectric spectra taken at Kitt Peak National Observatory. Kitt Peak National Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. Significant non-LTE effects are found and the Kurucz, Altrock-Cannon, Mount-Linsky II, and HSRA models are compared. We derive a solar carbon abundance of A c =8.30±0.10 for the Mount-Linsky model and A c =8.40±0.10 for the Altrock-Cannon model, compared to the HSRA value of A c =8.55±0.10, assuming a nitrogen abundance of logA N=7.93. In addition we specify the regions of formation for the CN(0, 0) 3883.35 Å bandhead at disc center and limb.  相似文献   
102.
Hydrothermal vent fluids from Middle Valley, a sediment-covered vent field located on the northern Juan de Fuca Ridge, were sampled in July, 2000. Eight different vents with exit temperatures of 186-281 °C were sampled from two areas of venting: the Dead Dog and ODP Mound fields. Fluids from the Dead Dog field are characterized by higher concentrations of ΣNH3 and organic compounds (C1-C4 alkanes, ethene, propene, benzene and toluene) compared with fluids from the ODP Mound field. The ODP Mound fluids, however, are characterized by higher C1/(C2 + C3) and benzene:toluene ratios than those from the Dead Dog field. The aqueous organic compounds in these fluids have been derived from both bacterial processes (methanogenesis in low temperature regions during recharge) as well as from thermogenic processes in higher temperature portions of the subsurface reaction zone. As the sediments undergo hydrothermal alteration, carbon dioxide and hydrocarbons are released to solution as organic matter degrades via a stepwise oxidation process. Compositional and isotopic differences in the aqueous hydrocarbons indicate that maximum subsurface temperatures at the ODP Mound are greater than those at the Dead Dog field. Maximum subsurface temperatures were calculated assuming that thermodynamic equilibrium is attained between alkenes and alkanes, benzene and toluene, and carbon dioxide and methane. The calculated temperatures for alkene-alkane equilibrium are consistent with differences in the dissolved Cl concentrations in fluids from the two fields, and confirm that subsurface temperatures at the ODP Mound are hotter than those at the Dead Dog field. Temperatures calculated assuming benzene-toluene equilibrium and carbon dioxide-methane equilibrium are similar to observed exit temperatures, and do not record the hottest subsurface conditions. The difference in subsurface temperatures estimated using organic geochemical thermometers reflects subsurface cooling processes via mixing of a hot, low salinity vapor with a cooler, seawater salinity fluid. Because of the disparate temperature dependence of alkene-alkane and benzene-toluene equilibria, the mixed fluid records both the high and low temperature equilibrium conditions. These calculations indicate that vapor-rich fluids are presently being formed in the crust beneath the ODP Mound, yet do not reach the surface due to mixing with the lower temperature fluids.  相似文献   
103.
Investigations on how desiccation changes sorption of organic compounds by salt marsh sediments provide insight into the physical and chemical properties of these wide-spread coastal sediments. We measured sorption of compounds with different polarities (lysine, tyrosine, naphthalene and aniline) onto natural sediments and sediments that were dried and rewetted. Sorption of lysine by marsh sediment decreased significantly when the sediment was dried using a freeze-drier, oven, or desiccator, and sorption capacity was not restored when sediments were rewetted. In contrast to lysine, the sorption capacity of more hydrophobic compounds (tyrosine, aniline and naphthalene) increased significantly after salt marsh sediment was dried. These results suggest that drying greatly increased sediment hydrophobicity. Consistently, water drop penetration time, an index of hydrophobicity, was significantly lower for combusted sediments than for those that were simply dried. Sediments treated with EDTA, or boiled in seawater, exhibited a similar or even greater reduction in lysine sorption capacity compared with sediments that were dried. Water retention capacity of salt marsh sediment decreased 50% after sediment was dried. The effects of pH and salinity on lysine sorption in wet and dry sediments suggest that carboxyl groups play a major role in lysine sorption through cation ion exchange, and drying may reduce access to carboxyl groups. We hypothesize that the three-dimensional (3D) structure of organic matter, originating mainly from Spartina alterniflora, is an important factor controlling sorption capacity in salt marsh sediment. The drying process makes sedimentary organic matter change conformation, shrink in volume, and expose hydrophobic groups, thus becoming more hydrophobic. In environments with wet and dry cycles, the distribution of hydrophobic or hydrophilic compounds between solution and particulate phases could thus be influenced by the 3D structure and polarity of organic matter.  相似文献   
104.
A centrifugal mill is a high-power intensity media mill that can be used for ultra-fine grinding, employing centrifugal forces generated by gyration of the axis of the mill tube in a circle. The mill charge motion is quite different depending on the ratio of the gyration diameter to the mill diameter (G / D ratio), varying from a motion similar to that of a conventional tumbling media mill to that of a vibration mill. In this study, a centrifugal mill was constructed with an arrangement where the gyration diameter could be readily adjusted. The batch grinding characteristics of three different minerals (limestone, talc and illite) in water with dispersing agent were investigated at various G / D ratios. It was found that the optimum G / D ratio in terms of the specific energy consumption to give a desired fineness of product was different for the three minerals. This was due to their different reactions to the breakage mechanisms provided by the mill charge motion at varying G / D ratios. The size distributions became progressively narrower at increased grinding times, and particles finer than about 0.1 μm were not detected even for prolonged grinding times. Measurement of specific surface areas indicated that this was not due to an artifact of the size measurements by laser diffractometry. This implies that there is a limitation in which particles finer than 0.1 μm are not produced under the conditions tested in this type of mill, but further investigation is needed for experimental verification of this limit of comminution.  相似文献   
105.
Study on the kinetics of iron oxide leaching by oxalic acid   总被引:2,自引:0,他引:2  
The presence of iron oxides in clay or silica raw materials is detrimental to the manufacturing of high quality ceramics. Although iron has been traditionally removed by physical mineral processing, acid washing has been tested as it is more effective, especially for extremely low iron (of less than 0.1% w/w). However, inorganic acids such as sulphuric or hydrochloric acids easily contaminate the clay products with SO42− and Cl, and therefore should be avoided as much as possible. On the other hand, if oxalic acid is used, any acid left behind will be destroyed during the firing of the ceramic products. The characteristics of dissolution of iron oxides were therefore investigated in this study.The dissolution of iron oxides in oxalic acid was found to be very slow at temperatures within the range 25–60 °C, but its rate increases rapidly above 90 °C. The dissolution rate also increases with increasing oxalate concentration at the constant pH values set within the optimum range of pH2.5–3.0. At this optimum pH, the dissolution of fine pure hematite (Fe2O3) (105–140 μm) follows a diffusion-controlled shrinking core model. The rate expression expressed as 1 − (2 / 3)x − (1 − x)2 / 3 where x is a fraction of iron dissolution was found to be proportional to [oxalate]1.5.The addition of magnetite to the leach liquor at 10% w/w hematite was found to enhance the dissolution rate dramatically. Such addition of magnetite allows coarser hematite in the range 0.5–1.4 mm to be leached at a reasonable rate.  相似文献   
106.
We present the results of a search for and analysis of line-profile variations in the spectrum of the star ι Her. The observations were acquired with the 1.8 m telescope of the Bohyunsan Optical Astronomy Observatory (Republic of Korea) in May–June 2004. We obtained 69 spectra of the star with signal-to-noise ratios ≈300 and a time resolution of 5–7 min. Profile variability was revealed for six lines of HI, HeI, and SiIII, in the central parts of the lines. The variability amplitude is ≈(1–2)% in units of the intensity of the adjacent continuum. Evidence was found for cyclic variations of the lines, with periods from ≈7h to ≈2.9d. We conclude that ι Her belongs to the group of slowly pulsating stars.  相似文献   
107.
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号