首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   4篇
  国内免费   1篇
测绘学   7篇
大气科学   4篇
地球物理   34篇
地质学   56篇
海洋学   17篇
天文学   4篇
自然地理   19篇
  2021年   8篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   7篇
  2012年   6篇
  2011年   8篇
  2010年   7篇
  2009年   10篇
  2008年   10篇
  2007年   8篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  2002年   4篇
  2000年   5篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1984年   1篇
  1928年   1篇
排序方式: 共有141条查询结果,搜索用时 312 毫秒
51.
The adaptive composite map projection technique changes the projection to minimize distortion for the geographic area shown on a map. This article improves the transition between the Lambert azimuthal projection and the transverse equal-area cylindrical projection that are used by adaptive composite projections for portrait-format maps. Originally, a transverse Albers conic projection was suggested for transforming between these two projections, resulting in graticules that are not symmetric relative to the central meridian. We propose the alternative transverse Wagner transformation between the two projections and provide equations and parameters for the transition. The suggested technique results in a graticule that is symmetric relative to the central meridian, and a map transformation that is visually continuous with changing map scale.  相似文献   
52.
Loading and unloading effects of the Scandinavian Ice Sheet triggered halotectonic movements in Northern Germany. We present newly detected geomorphological features—termed surface cracks—which indicate a relation between ice sheet-induced salt movement and surface processes. As a part of the Central European Basin System, numerous Zechstein salt structures are abundant in the North German Basin. On the basis of high-resolution digital terrain data, more than 160 surface cracks were mapped in Northern Germany, which were grouped into 30 clusters. Almost all of the surface cracks occur above the top regions of Zechstein salt structures. The surface cracks can be several kilometres long, up to more than 20 m deep and more than 100 m wide. The comparison of the shape of the salt structures and the orientation of the cracks reveals a geometric dependency, indicating that the cracks preferably occur near the crest margins of the salt structures. Furthermore, 3D seismic data from two sites show that subsurface faults originating from salt movement exist beneath the surface cracks. We interpret the cracks as surface ruptures due to ice sheet-induced halotectonic movements. The cracks occur in a variety of Quaternary sediments and landforms. This indicates that widespread halokinetic movements occurred in the region after the last (Weichselian) deglaciation and likely before the thawing of the permafrost, possibly in a time frame from c. 30–20 ka until c. 15 ka.  相似文献   
53.
SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450?C900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/2022, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5?C10?AU) from nearby stars (<25 pc) with masses ranging from a few Jupiter masses to Super Earths (??2 Earth radii, ??10 M??) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System.  相似文献   
54.
There are two problems with current cylindrical projections for world maps. First, existing cylindrical map projections have a static height-to-width aspect ratio and do not automatically adjust their aspect ratio in order to optimally use available canvas space. Second, many of the commonly used cylindrical compromise projections show areas and shapes at higher latitudes with considerable distortion. This article introduces a new compromise cylindrical map projection that adjusts the distribution of parallels to the aspect ratio of a canvas. The goal of designing this projection was to show land masses at central latitudes with a visually balanced appearance similar to how they appear on a globe. The projection was constructed using a visual design procedure where a series of graphically optimized projections was defined for a select number of aspect ratios. The visually designed projections were approximated by polynomial expressions that define a cylindrical projection for any height-to-width ratio between 0.3:1 and 1:1. The resulting equations for converting spherical to Cartesian coordinates require a small number of coefficients and are fast to execute. The presented aspect-adaptive cylindrical projection is well suited for digital maps embedded in web pages with responsive web design, as well as GIS applications where the size of the map canvas is unknown a priori. We highlight the projection with a height-to-width ratio of 0.6:1, which we call the Compact Miller projection because it is inspired by the Miller Cylindrical projection. Unlike the Miller Cylindrical projection, the Compact Miller projection has a smaller height-to-width ratio and shows the world with less areal distortion at higher latitudes. A user study with 448 participants verified that the Compact Miller – together with the Plate Carrée projection – is the most preferred cylindrical compromise projection.  相似文献   
55.
Based on geochronological, petrological, stratigraphical, and sedimentological data, this paper describes the deposits left by the most powerful Holocene eruption of Chachimbiro compound volcano, in the northern part of Ecuador. The eruption, dated between 3640 and 3510 years BC, extruded a ~650-m-wide and ~225-m-high rhyodacite dome, located 6.3 km east of the central vent, that exploded and produced a large pyroclastic density current (PDC) directed to the southeast followed by a sub-Plinian eruptive column drifted by the wind to the west. The PDC deposit comprises two main layers. The lower layer (L1) is massive, typically coarse-grained and fines-depleted, with abundant dense juvenile fragments from the outgassed dome crust. The upper layer (L2) consists of stratified coarse ash and lapilli laminae, with juvenile clasts showing a wide density range (0.7–2.6 g cm?3). The thickness of the whole deposit ranges from few decimeters on the hills to several meters in the valleys. Deposits extending across six valleys perpendicular to the flow direction allowed us to determine a minimum velocity of 120 m s?1. These characteristics show striking similarities with deposits of high-energy turbulent stratified currents and in particular directed blasts. The explosion destroyed most of the dome built during the eruption. Subsequently, the sub-Plinian phase left a decimeter-thick accidental-fragment-rich pumice layer in the Chachimbiro highlands. Juvenile clasts, rhyodacitic in composition (SiO2?=?68.3 wt%), represent the most differentiated magma of Chachimbiro volcano. Magma processes occurred at two different depths (~14.4 and 8.0 km). The hot (~936 °C) deep reservoir fed the central vent while the shallow reservoir (~858 °C) had an independent evolution, probably controlled by El Angel regional fault system. Such destructive eruptions, related to peripheral domes, are of critical importance for hazard assessment in large silicic volcanic complexes such as those forming the Frontal Volcanic Arc of Ecuador and Colombia.  相似文献   
56.
In common with most of the larger ophiolite bodies that were emplaced during the Cenozoic and late Mesozoic and which have experienced relatively little post-emplacement disruption or metamorphism, the Zambales Ophiolite Complex (ZOC) of western Luzon (northern Philippines) is associated with very large gravity anomalies. Worldwide and in the ZOC, peak to trough amplitudes of more than 100 mGal are common and amplitudes in excess of 200 mGal are not unknown  相似文献   
57.
Lewis  Matt J.  Palmer  Tamsin  Hashemi  Resa  Robins  Peter  Saulter  Andrew  Brown  Jenny  Lewis  Huw  Neill  Simon 《Ocean Dynamics》2019,69(3):367-384
Ocean Dynamics - The combined hazard of large waves occurring at an extreme high water could increase the risk of coastal flooding. Wave-tide interaction processes are known to modulate the wave...  相似文献   
58.
In this paper, a numerical model to predict flow‐induced shear failure along pre‐existing fractures is presented. The framework is based on a discrete fracture representation embedded in a continuum describing the damaged matrix. A finite volume method is used to compute both flow and mechanical equilibrium, whereas specifically tailored basis functions are used to account for the physics at discontinuities. The failure criterion is based on a maximum shear strength limit, which changes with varying compressive stress on the fracture manifold. The displacements along fracture manifolds are obtained such that force balance is achieved under conditions, where shear stress of the failing fracture segment is constrained to the maximum shear strength at the segment. Simultaneously, the fluid pressure is computed independently of the shear slip. A relaxation model approach is used to obtain the maximum shear limit on the fracture manifold, which leads to grid convergence.  相似文献   
59.
Globally, the number of people experiencing water stress is expected to increase by millions by the end of the century. The Great Lakes region, representing 20% of the world's surface freshwater, is not immune to stresses on water supply due to uncertainties on the impacts of climate and land use change. It is imperative for researchers and policy makers to assess the changing state of water resources, even if the region is water rich. This research developed the integrated surface water-groundwater GSFLOW model and investigated the effects of climate change and anthropogenic activities on water resources in the lower Great Lakes region of Western New York. To capture a range of scenarios, two climate emission pathways and three land development projections were used, specifically RCP 4.5, RCP 8.5, increased urbanization by 50%, decreased urbanization by 50%, and current land cover, respectively. Model outputs of surface water and groundwater discharge into the Great Lakes and groundwater storage for mid- and late century were compared to historical to determine the direction and amplitude of changes. Both surface water and groundwater systems show no statistically significant changes under RCP 4.5 but substantial and worrisome losses with RCP 8.5 by mid-century and end of century. Under RCP 8.5, streamflow decreased by 22% for mid-century and 42% for late century. Adjusting impervious surfaces revealed complex land use effects, resulting in spatially varying groundwater head fluctuations. For instance, increasing impervious surfaces lowered groundwater levels from 0.5 to 3.8 m under Buffalo, the largest city in the model domain, due to reduced recharge in surrounding suburban areas. Ultimately, results of this study highlight the necessity of integrated modelling in assessing temporal changes to water resources. This research has implications for other water-rich areas, which may not be immune to effects of climate change and human activities.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号