首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   26篇
  国内免费   8篇
测绘学   21篇
大气科学   36篇
地球物理   150篇
地质学   203篇
海洋学   65篇
天文学   68篇
综合类   6篇
自然地理   44篇
  2024年   1篇
  2023年   6篇
  2022年   1篇
  2021年   6篇
  2020年   10篇
  2019年   23篇
  2018年   24篇
  2017年   16篇
  2016年   28篇
  2015年   26篇
  2014年   23篇
  2013年   40篇
  2012年   23篇
  2011年   33篇
  2010年   40篇
  2009年   36篇
  2008年   28篇
  2007年   32篇
  2006年   35篇
  2005年   25篇
  2004年   18篇
  2003年   14篇
  2002年   20篇
  2001年   17篇
  2000年   9篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   8篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1972年   1篇
  1968年   1篇
排序方式: 共有593条查询结果,搜索用时 31 毫秒
111.
In the German State Brandenburg, water clarity and the concentrations of the water quality components chlorophyll a, seston and gelbstoff were measured in 27 lakes. Correlation analysis showed, that spectral beam attenuation at 662 and 514 nm was mainly dependent on changes in chlorophyll a concentrations. In the UV-channel at 360 nm, beam attenuation depended mostly on gelbstoff.

Multiple linear regression provided a direct model of beam attenuation at 514 nm with the inputs of inorganic seston, chlorophyll a and gelbstoff. The specific beam attenuation coefficients were comparable to other natural waters around the world. An inverse model is presented, from which gelbstoff and chlorophyll a could be predicted with some accuracy from the inputs of beam attenuation coefficients at 514 and 360 nm. However, it became obvious that biological variability put major constraints on the predictive capacity of both the direct and the inverse model.

Furthermore, we observed a good correspondence of Secchi depth and the inverse of beam attenuation at 514 nm. The predictions of Secchi depth and chlorophyll a concentration from the inverse model were assessed in perspective of using this instrument instead of laborious chemical analysis for future trophic status classification according to LAWA (Länderarbeitsgemeinschaft Wasser). Predictions of trophic status were principally good when using calibrated models, however, quality of classification critically depended on predictions of chlorophyll a.  相似文献   

112.
There has, in recent years, been an increasing interest in developing nutrient load mitigation measures focussing on tile drains. To plan the location of such tile drain measures, it is important to know where in the landscape drain flow is generated and to understand the key factors governing drain flow dynamics. In the present study, we test two approaches to assess spatial patterns in drain flow generation and thereby assess the importance of including geological information. The approaches are the widely used topographical wetness index (TWI), based solely on elevation data, and hydrological models that include the subsurface geology. We set‐up an ensemble of 20 hydrological models based on 20 stochastically generated geological models to predict drain flow dynamics in the clay till Norsminde catchment in Denmark and test the results against TWI. We find that the hydrological models predict observed daily drain flow reasonably well. High drain flow volumes were found in stream valleys and in wetlands and lower drain flow volumes in the more hilly parts of the catchment. In spite of the apparent connection to the landscape, there was no statistically significant correlation between TWI and drain flow at grid scale (100 × 100 m). TWI was therefore not found to be a sufficient index on its own to assess where drain flow is generated, especially in the highlands of the catchment. The geology below 3 m was found to have a large impact on the drain flow, and correlations between sand percentage in the subsurface geology and drain flow volume were found to be statistically significant. Geological uncertainty therefore give rise to uncertainty on simulated drain flow, and this uncertainty was found to be high at the model grid scale but decreasing with increasing scale.  相似文献   
113.
Solute concentrations in streamflow typically vary systematically with stream discharge, and the resulting concentration–discharge relationships are important signatures of catchment biogeochemical processes. Solutes derived from mineral weathering often exhibit decreasing concentrations with increasing flows, suggesting dilution of a kinetically limited weathering flux by a variable flux of water. However, previous work showed that concentration–discharge relationships of weathering‐derived solutes in 59 headwater catchments were much weaker than this simple dilution model would predict. Instead, catchments behaved as chemostats, with rates of solute production and/or mobilization that were nearly proportional to water fluxes, on both event and interannual timescales. Here, we re‐examine these findings using data for a wider range of solutes from 2,186 catchments, ranging from ~10 to >1,000,000 km2 in drainage area and spanning a wide range of lithologic and climatic settings. Concentration–discharge relationships among this much larger set of larger catchments are broadly consistent with the previously described chemostatic behaviour, at least on event and interannual timescales for weathering‐derived solutes. Among these same catchments, however, site‐to‐site variations in mean concentrations of weathering‐derived solutes exhibit strong negative correlations with long‐term average precipitation and discharge, reflecting strong climatic control on long‐term leaching of the critical zone. We use multiple regression of site characteristics including discharge to identify potential controls on long‐term mean concentrations and find that lithologic and land cover controls are significant predictors for many analytes. The picture that emerges is one in which, on event and interannual timescales, weathering‐derived stream solute concentrations are chemostatically buffered by groundwater storage and fast chemical reactions, but each catchment's chemostatic “set point” reflects site‐to‐site differences in climatically driven evolution of the critical zone. In contrast to these weathering products, some nutrients and particulates are often near‐chemostatic across all timescales, and their long‐term mean concentrations correlate more strongly with land use than climatic characteristics.  相似文献   
114.
115.
To study the geological control on groundwater As concentrations in Red River delta, depth-specific groundwater sampling and geophysical logging in 11 monitoring wells was conducted along a 45 km transect across the southern and central part of the delta, and the literature on the Red River delta’s Quaternary geological development was reviewed. The water samples (n = 30) were analyzed for As, major ions, Fe2+, H2S, NH4, CH4, δ18O and δD, and the geophysical log suite included natural gamma-ray, formation and fluid electrical conductivity. The SW part of the transect intersects deposits of grey estuarine clays and deltaic sands in a 15–20 km wide and 50–60 m deep Holocene incised valley. The NE part of the transect consists of 60–120 m of Pleistocene yellowish alluvial deposits underneath 10–30 m of estuarine clay overlain by a 10–20 m veneer of Holocene sediments. The distribution of δ18O-values (range −12.2‰ to −6.3‰) and hydraulic head in the sample wells indicate that the estuarine clay units divide the flow system into an upper Holocene aquifer and a lower Pleistocene aquifer. The groundwater samples were all anoxic, and contained Fe2+ (0.03–2.0 mM), Mn (0.7–320 μM), SO4 (<2.1 μM–0.75 mM), H2S (<0.1–7.0 μM), NH4 (0.03–4.4 mM), and CH4 (0.08–14.5 mM). Generally, higher concentrations of NH4 and CH4 and low concentrations of SO4 were found in the SW part of the transect, dominated by Holocene deposits, while the opposite was the case for the NE part of the transect. The distribution of the groundwater As concentration (<0.013–11.7 μM; median 0.12 μM (9 μg/L)) is related to the distribution of NH4, CH4 and SO4. Low concentrations of As (?0.32 μM) were found in the Pleistocene aquifer, while the highest As concentrations were found in the Holocene aquifer. PHREEQC-2 speciation calculations indicated that Fe2+ and H2S concentrations are controlled by equilibrium for disordered mackinawite and precipitation of siderite. An elevated groundwater salinity (Cl range 0.19–65.1 mM) was observed in both aquifers, and dominated in the deep aquifer. A negative correlation between aqueous As and an estimate of reduced SO4 was observed, indicating that Fe sulphide precipitation poses a secondary control on the groundwater As concentration.  相似文献   
116.
Precise positioning with the current Chinese BeiDou Navigation Satellite System is proven to be of comparable accuracy to the Global Positioning System, which is at centimeter level for the horizontal components and sub-decimeter level for the vertical component. But the BeiDou precise point positioning (PPP) shows its limitation in requiring a relatively long convergence time. In this study, we develop a numerical weather model (NWM) augmented PPP processing algorithm to improve BeiDou precise positioning. Tropospheric delay parameters, i.e., zenith delays, mapping functions, and horizontal delay gradients, derived from short-range forecasts from the Global Forecast System of the National Centers for Environmental Prediction (NCEP) are applied into BeiDou real-time PPP. Observational data from stations that are capable of tracking the BeiDou constellation from the International GNSS Service (IGS) Multi-GNSS Experiments network are processed, with the introduced NWM-augmented PPP and the standard PPP processing. The accuracy of tropospheric delays derived from NCEP is assessed against with the IGS final tropospheric delay products. The positioning results show that an improvement in convergence time up to 60.0 and 66.7% for the east and vertical components, respectively, can be achieved with the NWM-augmented PPP solution compared to the standard PPP solutions, while only slight improvement in the solution convergence can be found for the north component. A positioning accuracy of 5.7 and 5.9 cm for the east component is achieved with the standard PPP that estimates gradients and the one that estimates no gradients, respectively, in comparison to 3.5 cm of the NWM-augmented PPP, showing an improvement of 38.6 and 40.1%. Compared to the accuracy of 3.7 and 4.1 cm for the north component derived from the two standard PPP solutions, the one of the NWM-augmented PPP solution is improved to 2.0 cm, by about 45.9 and 51.2%. The positioning accuracy for the up component improves from 11.4 and 13.2 cm with the two standard PPP solutions to 8.0 cm with the NWM-augmented PPP solution, an improvement of 29.8 and 39.4%, respectively.  相似文献   
117.
118.
This paper shows a history matching workflow with both production and 4D seismic data where the uncertainty of seismic data for history matching comes from Bayesian seismic waveform inversion. We use a synthetic model and perform two seismic surveys, one before start of production and the second after 1 year of production. From the first seismic survey, we estimate the contrast in slowness squared (with uncertainty) and use this estimate to generate an initial estimate of porosity and permeability fields. This ensemble is then updated using the second seismic survey (after inversion to contrasts) and production data with an iterative ensemble smoother. The impact on history matching results from using different uncertainty estimates for the seismic data is investigated. From the Bayesian seismic inversion, we get a covariance matrix for the uncertainty and we compare using the full covariance matrix with using only the diagonal. We also compare with using a simplified uncertainty estimate that does not come from the seismic inversion. The results indicate that it is important not to underestimate the noise in seismic data and that having information about the correlation in the error in seismic data can in some cases improve the results.  相似文献   
119.
The Great Belt, the Øresund and the Little Belt connect the central Baltic Sea and the Kattegat. A fixed station was moored in the contraction area in the Little Belt during the period 18–28 July 1995, measuring temperature, salinity and current in two levels, while discharge was measured by the RVDana. The composite Froude number calculated at the fixed station shows that the two layer flow through this area was most often supercritical. The discharges were satisfactorily related to the currents measured at the fixed station, and time-series of transports through the Little Belt were established. When compared to the transports through the Øresund the water transport ratio (Øresund:Little Belt) was found to be 4·4, while the salt transport ratio was found to be 3·0. The resistance of the Little Belt, when considering the differences in sea level from Gedser to Hornbæk, was 1839×10−12 s2 m−5. On the basis of water level and surface salinity measurements made during the period 1931–76, a net discharge of 2300 m3 s−1and a net salt transport of 36 tonnes s−1through the Little Belt from the central Baltic Sea were found.  相似文献   
120.
Intersex in feral marine and freshwater fish from northeastern Germany   总被引:1,自引:0,他引:1  
A histopathological assessment of the gonad of male fish was performed as part of biological field studies carried out in coastal waters and small rivers in Mecklenburg-Western Pomerania, northeastern Germany. In the marine environment the eelpout (Zoarces viviparus) was selected as sentinel species. The three spined stickleback (Gasterosteus aculeatus) and perch (Perca fluviatilis) were chosen at freshwater locations. Histopathology of the testis revealed the presence of intersexuality in specimens of all three species. The intersex condition was defined by the simultaneous presence of primary oocytes within the apparently normal testis tissue. In comparison to stickleback and perch the eelpout exhibited the highest intersex prevalence and the most severe histological alterations. Fish with intersex were found at contaminated marine and freshwater stations as well as at sites with apparently little pollution. The findings suggest that feminised male fish were exposed to endocrine disrupting substances in the aquatic environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号