首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   26篇
  国内免费   8篇
测绘学   21篇
大气科学   36篇
地球物理   150篇
地质学   203篇
海洋学   65篇
天文学   68篇
综合类   6篇
自然地理   44篇
  2024年   1篇
  2023年   6篇
  2022年   1篇
  2021年   6篇
  2020年   10篇
  2019年   23篇
  2018年   24篇
  2017年   16篇
  2016年   28篇
  2015年   26篇
  2014年   23篇
  2013年   40篇
  2012年   23篇
  2011年   33篇
  2010年   40篇
  2009年   36篇
  2008年   28篇
  2007年   32篇
  2006年   35篇
  2005年   25篇
  2004年   18篇
  2003年   14篇
  2002年   20篇
  2001年   17篇
  2000年   9篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   8篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1972年   1篇
  1968年   1篇
排序方式: 共有593条查询结果,搜索用时 31 毫秒
71.
The paper presents the concept, the objectives, the approach used, and the expected performances and accuracies of a radioscience experiment based on a radio link between the Earth and the surface of Mars. This experiment involves radioscience equipment installed on a lander at the surface of Mars. The experiment with the generic name lander radioscience (LaRa) consists of an X-band transponder that has been designed to obtain, over at least one Martian year, two-way Doppler measurements from the radio link between the ExoMars lander and the Earth (ExoMars is an ESA mission to Mars due to launch in 2013). These Doppler measurements will be used to obtain Mars’ orientation in space and rotation (precession and nutations, and length-of-day variations). More specifically, the relative position of the lander on the surface of Mars with respect to the Earth ground stations allows reconstructing Mars’ time varying orientation and rotation in space.Precession will be determined with an accuracy better by a factor of 4 (better than the 0.1% level) with respect to the present-day accuracy after only a few months at the Martian surface. This precession determination will, in turn, improve the determination of the moment of inertia of the whole planet (mantle plus core) and the radius of the core: for a specific interior composition or even for a range of possible compositions, the core radius is expected to be determined with a precision decreasing to a few tens of kilometers.A fairly precise measurement of variations in the orientation of Mars’ spin axis will enable, in addition to the determination of the moment of inertia of the core, an even better determination of the size of the core via the core resonance in the nutation amplitudes. When the core is liquid, the free core nutation (FCN) resonance induces a change in the nutation amplitudes, with respect to their values for a solid planet, at the percent level in the large semi-annual prograde nutation amplitude and even more (a few percent, a few tens of percent or more, depending on the FCN period) for the retrograde ter-annual nutation amplitude. The resonance amplification depends on the size, moment of inertia, and flattening of the core. For a large core, the amplification can be very large, ensuring the detection of the FCN, and determination of the core moment of inertia.The measurement of variations in Mars’ rotation also determines variations of the angular momentum due to seasonal mass transfer between the atmosphere and ice caps. Observations even for a short period of 180 days at the surface of Mars will decrease the uncertainty by a factor of two with respect to the present knowledge of these quantities (at the 10% level).The ultimate objectives of the proposed experiment are to obtain information on Mars’ interior and on the sublimation/condensation of CO2 in Mars’ atmosphere. Improved knowledge of the interior will help us to better understand the formation and evolution of Mars. Improved knowledge of the CO2 sublimation/condensation cycle will enable better understanding of the circulation and dynamics of Mars’ atmosphere.  相似文献   
72.
One possibility to explore the subsurface layers of icy bodies is to use a probe with a “hot tip", which is able to penetrate ice layers by melting. Such probes have been built and used in the past for the exploration of terrestrial polar ice sheets and may also become useful tools to explore other icy layers in the Solar System. Examples for such layers are the polar areas of Mars or the icy crust of Jupiter’s moon Europa. However, while on Earth a heated probe launched into an ice sheet always causes melting with subsequent refreezing, the behaviour of such a probe in a low pressure environment is quite different. We report on the results of some experiments with a simple “melting probe" prototype with two different kinds of hot tips in a vacuum environment. For one of the tips the probe moved into two types of ice samples: (i) compact water ice and (ii) porous water ice with a snow (firn) like texture. It was also found that the penetration behaviour was basically different for the two sample types even when the same kind of tip was used. While in the porous sample the ice was only subliming, the phase changes occurring during the interaction of the tip with the compact ice are much more complex. Here alternating phases of melting and sublimation occur. The absence of the liquid phase has severe consequences on the performance of a “melting probe" under vacuum conditions: In this environment we find a high thermal resistance between the probe surface and the underlying ice. Therefore, only a low percentage of the heat that is generated in the tip is used to melt or sublime the ice, the bulk of the power is transferred towards the rear end of the probe. This is particularly a problem in the initial phases of an ice penetration experiment, when the probe has not yet penetrated the ice over its whole length. In the compact ice sample, phases could be observed, where a high enough gas pressure had built up locally underneath the probe, so that melting becomes possible. Only during these melting periods the thermal contact between the probe and the ice is good and in consequence the melting probe works effectively.  相似文献   
73.
GETEMME (Gravity, Einstein??s Theory, and Exploration of the Martian Moons?? Environment), a mission which is being proposed in ESA??s Cosmic Vision program, shall be launched for Mars on a Soyuz Fregat in 2020. The spacecraft will initially rendezvous with Phobos and Deimos in order to carry out a comprehensive mapping and characterization of the two satellites and to deploy passive Laser retro-reflectors on their surfaces. In the second stage of the mission, the spacecraft will be transferred into a lower 1500-km Mars orbit, to carry out routine Laser range measurements to the reflectors on Phobos and Deimos. Also, asynchronous two-way Laser ranging measurements between the spacecraft and stations of the ILRS (International Laser Ranging Service) on Earth are foreseen. An onboard accelerometer will ensure a high accuracy for the spacecraft orbit determination. The inversion of all range and accelerometer data will allow us to determine or improve dramatically on a host of dynamic parameters of the Martian satellite system. From the complex motion and rotation of Phobos and Deimos we will obtain clues on internal structures and the origins of the satellites. Also, crucial data on the time-varying gravity field of Mars related to climate variation and internal structure will be obtained. Ranging measurements will also be essential to improve on several parameters in fundamental physics, such as the Post-Newtonian parameter ?? as well as time-rate changes of the gravitational constant and the Lense-Thirring effect. Measurements by GETEMME will firmly embed Mars and its satellites into the Solar System reference frame.  相似文献   
74.
In-situ sensors for riverine water quality monitoring are a powerful tool to describe temporal variations when efficient and informative analyses are applied to the large quantities of data collected. Concentration-discharge hysteresis patterns observed during storm events give insights into headwater catchment processes. However, the applicability of this approach to larger catchments is less well known. Here, we evaluate the potential for high-frequency turbidity-discharge (Q) hysteresis patterns to give insights into processes operating in a meso-scale (722 km2) northern mixed land use catchment. As existing event identification methods did not work, we developed a new, objective method based on hydrograph characteristics and identified 76 events for further analysis. Qualitative event analysis identified three recurring patterns. Events with low mean Q (≤ 2 m3/s) often showed short-term, quasi-periodic turbidity variation, to a large extent disconnected from Q variation. High max Q events (≥15 m3/s) were often associated with spring flood or snowmelt, and showed a disconnection between turbidity and Q. Intermediate Q events (mean Q: 2–11 m3/s) were the most informative when applying hysteresis indexes, since changes in turbidity and Q were actually connected. Hysteresis indexes could be calculated on a subset of 60 events, which showed heterogeneous responses: 38% had a clockwise response, 12% anticlockwise, 12% figure eight (clockwise–anticlockwise), 10% reverse figure eight (anticlockwise–clockwise) and 28% showed a complex response. Clockwise hysteresis responses were associated with the wetter winter and spring seasons. Generally, changes in Q and turbidity were small during anticlockwise hysteresis events. Precipitation often influenced figure-eight patterns, while complex patterns often occurred during summer low flows. Analysis of intermediate Q events can improve process understanding of meso-scale catchments and possibly aid in choosing appropriate management actions for targeting a specific observed pattern.  相似文献   
75.
Many meteoroids burn up between about 120 km and 70 km, deposit metals and dust and form ionized trails which are detected by radars. Model studies about the influence of neutral or positively charged background dust on the ambipolar diffusion indicate that significant smaller decay times should be observed for weak meteor echoes compared to strong meteor echoes which can affect the estimation of temperatures. The variation of meteor decay times in dependence on echo strength, height, and season was studied using radar observations at 69° N, 22° S, and 67° S. Significantly reduced decay times were found for weak echoes below about 88 km at low latitudes throughout the year, and at high latitudes with the exception of summer. In summer at high latitudes, decreasing decay times of weak and strong meteors are observed at altitudes below about 85 km during the appearance of noctilucent clouds. The impact of reduced decay times on the estimation of neutral temperatures from decay times is discussed.  相似文献   
76.
Although electron probe microanalysis and secondary ion mass spectrometry are widely used analytical techniques for geochemical and mineralogical applications, metrologically rigorous quantification remains a major challenge for these methods. Secondary ion mass spectrometry (SIMS) in particular is a matrix‐sensitive method, and the use of matrix‐matched reference materials (RMs) is essential to avoid significant analytical bias. A major problem is that the number of available RMs for SIMS is extremely small compared with the needs of analysts. One approach for the production of matrix‐specific RMs is the use of high‐energy ion implantation that introduces a known amount of a selected isotope into a material. We chose the more elaborate way of implanting a so‐called ‘box‐profile’ to generate a quasi‐homogeneous concentration of the implanted isotope in three dimensions, which allows RMs not only to be used for ion beam analysis but also makes them suitable for EPMA. For proof of concept, we used the thoroughly studied mineralogically and chemically ‘simple’ SiO2 system. We implanted either 47Ti or 48Ti into synthetic, ultra‐high‐purity silica glass. Several ‘box‐profiles’ with mass fractions between 10 and 1000 μg g?1 Ti and maximum depths of homogeneous Ti distribution between 200 nm and 3 μm were produced at the Institute of Ion Beam Physics and Materials Research of Helmholtz‐Zentrum Dresden‐Rossendorf. Multiple implantation steps using varying ion energies and ion doses were simulated with Stopping and Range of Ions in Matter (SRIM) software, optimising for the target concentrations, implantation depths and technical limits of the implanter. We characterised several implant test samples having different concentrations and maximum implantation depths by means of SIMS and other analytical techniques. The results show that the implant samples are suitable for use as reference materials for SIMS measurements. The multi‐energy ion implantation technique also appears to be a promising procedure for the production of EPMA‐suitable reference materials.  相似文献   
77.
78.
79.
Bioassesment by the use of the macroalga, Ulva lactuca L., was carried out in the Limfjord, Denmark, to assess the significance of nitrogen and phosphorus as limiting factors for primary production during 1985, 1993, 1994 and 1995 and for the detection of changes in eutrophication levels.

Minimum and critical tissue concentrations for nitrogen and phosphorus in macroalgae were identified. The concentrations of nitrogen were generally below the critical concentration level in June–October in 1985, 1993, and 1995 but in 1994 nitrogen was only limiting for primary production in short periods. Only in early spring in 1985 and 1993 were the tissue concentrations of phosphorus below the critical concentration level, whereas in 1994 up to 3–4 months showed phosphorus limited growth, indicating that significant changes in limitation patterns can occur between different years.

It was concluded that the use of biomonitoring techniques is well suited as a bioassessment method for direct detection and for providing a time-integrated measure of nutrient availability in coastal waters, and thus for assessing ecosystem health with regard to eutrophication. It is recommended that biomonitors and the concept of critical tissue concentrations should be used in environmental management and incorporated in future monitoring programmes.  相似文献   

80.
Accurate prediction of water and air Iran sport parameters in variably saturated soil is necessary for modeling of soil-vapor extraction (SVE) at soil sites contaminated with volatile organic chemicals (VOCs). An expression for predicting saturated water permeability (kl,s) in undisturbed soils from the soil total porosity and the field capacity soil-water content was developed by fitting a tortuous-tube fluid flow model to measured water permeability and gas diffusivity data. The new kl,s expression gave accurate predictions when tested against independent kl,s data. The kl,s expression was implemented in the Campbell relative water permeability model to yield a predictive model for water permeability in variably saturated, undisturbed soil. The water permeability model, together with recently developed predictive equations for gas permeability and gas diffusivity, was used in a two-dimensional numerical SVE model that also included non-equilibrium mass transfer of VOC from a separate phase (nonaqueous phase liquid [NAPL]) to the air phase. SVE: calculations showed that gas permeability is likely the most important factor controlling VOC migration and vapor extraction efficiency. Water permeability and gas diffusivity effects became significant at water contents near and above field capacity. The NAPL-air mass transfer coefficient also had large impacts on simulated vapor extraction efficiency. The calculations suggest that realistic SVE models need to include predictive expressions for both conveciive, diffusive. and phase-partitioning processes in natural, undisturbed soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号