首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1151篇
  免费   72篇
  国内免费   22篇
测绘学   26篇
大气科学   79篇
地球物理   349篇
地质学   404篇
海洋学   103篇
天文学   155篇
综合类   6篇
自然地理   123篇
  2024年   2篇
  2023年   4篇
  2022年   4篇
  2021年   23篇
  2020年   30篇
  2019年   22篇
  2018年   40篇
  2017年   33篇
  2016年   49篇
  2015年   50篇
  2014年   41篇
  2013年   75篇
  2012年   65篇
  2011年   70篇
  2010年   61篇
  2009年   76篇
  2008年   79篇
  2007年   70篇
  2006年   58篇
  2005年   52篇
  2004年   50篇
  2003年   34篇
  2002年   31篇
  2001年   19篇
  2000年   13篇
  1999年   12篇
  1998年   18篇
  1997年   13篇
  1996年   15篇
  1995年   10篇
  1994年   9篇
  1993年   11篇
  1992年   12篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   15篇
  1984年   6篇
  1983年   11篇
  1982年   9篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1978年   5篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1245条查询结果,搜索用时 593 毫秒
991.
Parametric system identification is used to evaluate seismic soil–structure interaction effects in buildings. The input–output strong motion data pairs needed for evaluations of flexible- and fixed-base fundamental mode parameters are derived. Recordings of lateral free-field, foundation, and roof motions, as well as foundation rocking, are found to be necessary for direct evaluations of modal parameters for both cases of base fixity. For the common situation of missing free-field or base rocking motions, procedures are developed for estimating the modal parameters that cannot be directly evaluated. The accuracy of these estimation procedures for fundamental mode vibration period and damping is verified for eleven sites with complete instrumentation of the structure, foundation, and free-field. © 1998 John Wiley & Sons, Ltd.  相似文献   
992.
We report on the development and validation of a coupled two- and one-dimensional finite-element model for the Scheldt tributaries, river, estuary and region of fresh water influence (ROFI). The hydrodynamic equations are solved on a single, unstructured, multi-scale mesh stretching from the shelf break to the Scheldt tributaries. The tide is forced on the shelf break and propagates upstream in the riverine network. Upstream boundaries lie on sluices or outside of the region of tidal dominance where daily averaged discharges are imposed. Two-dimensional, depth-averaged shallow water equations are solved by means of the discontinuous Galerkin (DG) method over the marine and estuarine parts of the computational domain. In the rivers, however, one-dimensional equations are dealt with using the DG method with the addition of a technique to cope with confluence points. Model parameters are carefully calibrated, leading to the simulation of wind- and tide-forced flows that are in excellent agreement with available data. The diffusivity in the transport equation is calibrated using time series of salinity at various locations in the estuary. Finally, the Lagrangian residual transport in the estuary and the adjacent coastal zone is investigated. This work is a major step towards an integrated model for studying the dynamics of waterborne contaminants and the water renewal timescales in the Scheldt land-sea continuum.  相似文献   
993.
The Arcachon lagoon is a 156 km2 temperate mesotidal lagoon dominated by tidal flats (66% of the surface area). The methane (CH4) sources, sinks and fluxes were estimated from water and pore water concentrations, from chamber flux measurements at the sediment–air (low tide), sediment–water and water–air (high tide) interfaces, and from potential oxidation and production rate measurements in sediments. CH4 concentrations in waters were maximal (500–1000 nmol l−1) in river waters and in tidal creeks at low tide, and minimal in the lagoon at high tide (<50 nmol l−1). The major CH4 sources are continental waters and the tidal pumping of sediment pore waters at low tide. Methanogenesis occurred in the tidal flat sediments, in which pore water concentrations were relatively high (2.5–8.0 μmol l−1). Nevertheless, the sediment was a minor CH4 source for the water column and the atmosphere because of a high degree of anaerobic and aerobic CH4 oxidation in sediments. Atmospheric CH4 fluxes at high and low tide were low compared to freshwater wetlands. Temperate tidal lagoons appear to be very minor contributor of CH4 to global atmosphere and to open ocean.  相似文献   
994.
Human activities in the watersheds surrounding Maunalua Bay, Oahu, Hawaii, have lead to the degradation of coastal coral reefs affecting populations of marine organisms of ecological, economic and cultural value. Urbanization, stream channelization, breaching of a peninsula, seawalls, and dredging on the east side of the bay have resulted in increased volumes and residence time of polluted runoff waters, eutrophication, trapping of terrigenous sediments, and the formation of a permanent nepheloid layer. The ecosystem collapse on the east side of the bay and the prevailing westward longshore current have resulted in the collapse of the coral and coralline algae population on the west side of the bay. In turn this has lead to a decrease in carbonate sediment production through bio-erosion as well as a disintegration of the dead coral and coralline algae, leading to sediment starvation and increased wave breaking on the coast and thus increased coastal erosion. The field data and resulting coral reef ecohydrology model presented in this paper demonstrate and quantify the importance of biophysical processes leading to coral reef degradation as the result of urbanization. Coral restoration in Maunalua Bay will require an integrated ecosystem approach.  相似文献   
995.
Temporal and spatial patterns of variability in Puget Sound's oceanographic properties are determined using continuous vertical profile data from two long-term monitoring programs; monthly observations at 16 stations from 1993 to 2002, and biannual observations at 40 stations from 1998 to 2003. Climatological monthly means of temperature, salinity, and density reveal strong seasonal patterns. Water temperatures are generally warmest (coolest) in September (February), with stations in shallow finger inlets away from mixing zones displaying the largest temperature ranges. Salinities and densities are strongly influenced by freshwater inflows from major rivers during winter and spring from precipitation and snowmelt, respectively, and variations are greatest in the surface waters and at stations closest to river mouths. Vertical density gradients are primarily determined by salinity variations in the surface layer, with stations closest to river mouths most frequently displaying the largest buoyancy frequencies at depths of approximately 4–6 m. Strong tidal stirring and reflux over sills at the entrance to Puget Sound generally removes vertical stratification. Mean summer and winter values of oceanographic properties reveal patterns of spatial connectivity in Puget Sound's three main basins; Whidbey Basin, Hood Canal, and Main Basin. Surface waters that are warmed in the summer are vertically mixed over the sill at Admiralty Inlet and advected at depth into Whidbey Basin and Hood Canal. Cooler and fresher surface waters cap these warmer waters during winter, producing temperature inversions.  相似文献   
996.
Transport between pore waters and overlying surface waters of Flamengo Bay near Ubatuba, Brazil, was quantified using natural and artificial geochemical tracers, 222Rn, Cl, and SF6, collected from multi-level piezometers installed along a transect perpendicular to the shore. Eight sampling ports positioned along the length of the piezometers allowed sampling of pore waters at discrete depth intervals from 10 to 230 cmbsf (centimeters below seafloor). Small volume samples were collected from the piezometers using a peristaltic pump to obtain pore water depth profiles. Pore water 222Rn is deficient in shallow sediments, allowing application of a diffusion-corrected 222Rn exchange rate. This model estimates the magnitude of pore water exchange rates to be about 130–419 cm/day. An SF6-saturated fluorescein dye tracer was gently pumped into deep pore waters and exchange rates estimated from this method range from 29 to 185 cm/day. While absolute rates are higher using 222Rn than SF6, rates are of similar magnitudes and the trends with distance from shore are the same – flow is greatest 6 m from shore and decreases by more than 50% further offshore. A Cl mass balance indicates the greatest fraction of fresh SGD occurs along an apparent preferential flow path in sediments within 5–7 m of the shoreline (87%). Recirculating bay waters through sediments dominate pore water advection at 10 m offshore where only 4% of the flow can be attributed to a freshwater source. Both fresh and marine sources combine to make up submarine groundwater discharge to coastal water bodies. The magnitude of fresh aquifer discharge is often a spatially variable and minor component of the total discharge.  相似文献   
997.
The study of lysogeny in aquatic systems is an often overlooked aspect of microbial ecology, especially in tropical environments. Herein, the fraction of lysogenized cells (FLC) was detected in the surface waters of 20 coastal stations distributed from the eutrophicated shoreline to seaward waters of Hann Bay (Senegal). Concurrently, viral lytic infection rates were extrapolated from the frequency of visibly infected bacterial cells (FVIC), as determined from transmission electron microscopy observations. The experimental induction of prophage was observed in less than 3% of indigenous marine bacteria, suggesting that lysogenic stages of infection are rare in Hann Bay. Similarly, only 0.5–4.7% of bacteria showed visible signs of lytic infection. However, the positive correlation between the fraction of lysogenic and lytic cells (r = 0.67, p < 0.05, n = 20) may actually indicate that the coexistence of both lifestyles may be due to the massive and rapid induction of lysogens, potentially from the high levels of local UV radiation. Overall, we suggest that the determination of FVIC and FLC to examine the predominance of one type of cycle versus the other may be a source of misinterpretation in some particular aquatic environments.  相似文献   
998.
999.
Peatlands in the Western Boreal Plains act as important water sources in the landscape. Their persistence, despite potential evapotranspiration (PET) often exceeding annual precipitation, is attributed to various water storage mechanisms. One storage element that has been understudied is seasonal ground ice (SGI). This study characterized spring SGI conditions and explored its impacts on available energy, actual evapotranspiration, water table, and near surface soil moisture in a western boreal plains peatland. The majority of SGI melt took place over May 2017. Microtopography had limited impact on melt rates due to wet conditions. SGI melt released 139mm in ice water equivalent (IWE) within the top 30cm of the peat, and weak significant relationships with water table and surface moisture suggest that SGI could be important for maintaining vegetation transpiration during dry springs. Melting SGI decreased available energy causing small reductions in PET (<10mm over the melt period) and appeared to reduce actual evapotranspiration variability but not mean rates, likely due to slow melt rates. This suggests that melting SGI supplies water, allowing evapotranspiration to occur at near potential rates, but reduces the overall rate at which evapotranspiration could occur (PET). The role of SGI may help peatlands in headwater catchments act as a conveyor of water to downstream landscapes during the spring while acting as a supply of water for the peatland. Future work should investigate SGI influences on evapotranspiration under differing peatland types, wet and dry spring conditions, and if the spatial variability of SGI melt leads to spatial variability in evapotranspiration.  相似文献   
1000.
Buried palaeo‐valley systems have been identified widely beneath lowland parts of the UK including eastern England, central England, south Wales and the North Sea. In the Midland Valley of Scotland palaeo‐valleys have been identified yet the age and genesis of these enigmatic features remain poorly understood. This study utilizes a digital data set of over 100 000 boreholes that penetrate the full thickness of deposits in the Midland Valley of Scotland. It identified 18 buried palaeo‐valleys, which range from 4 to 36 km in length and 24 to 162 m in depth. Geometric analysis has revealed four distinct valley morphologies, which were formed by different subglacial and subaerial processes. Some palaeo‐valleys cross‐cut each other with the deepest features aligning east–west. These east–west features align with the reconstructed ice‐flow direction under maximum conditions of the Main Late Devensian glaciation. The shallower features appear more aligned to ice‐flow direction during ice‐sheet retreat, and were therefore probably incised under more restricted ice‐sheet configurations. The bedrock lithology influences and enhances the position and depth of palaeo‐valleys in this lowland glacial terrain. Faults have juxtaposed Palaeozoic sedimentary and igneous rocks and the deepest palaeo‐valleys occur immediately down‐ice of knick‐points in the more resistant igneous bedrock. The features are regularly reused and the fills are dominated by glacial fluvial and glacial marine deposits. This suggests that the majority of infilling of the features happened during deglaciation and may be unrelated to the processes that cut them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号