首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   30篇
  国内免费   3篇
测绘学   5篇
大气科学   23篇
地球物理   54篇
地质学   70篇
海洋学   14篇
天文学   65篇
自然地理   37篇
  2024年   2篇
  2023年   3篇
  2022年   2篇
  2021年   8篇
  2020年   10篇
  2019年   12篇
  2018年   6篇
  2017年   18篇
  2016年   19篇
  2015年   10篇
  2014年   23篇
  2013年   31篇
  2012年   17篇
  2011年   18篇
  2010年   14篇
  2009年   21篇
  2008年   13篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1985年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有268条查询结果,搜索用时 78 毫秒
111.
Three commonly used thermal equations of state for carbon dioxide, as well as the ideal gas law, have been compared against a large number of measurement data taken from the literature. Complex equations of state reach a higher accuracy than simple ones. The inaccuracy of the density function can cause large errors in fluid property correlations, such as heat capacity or viscosity. The influence of this inaccuracy on the results of numerical simulations have been evaluated by two examples: The first one assumes isothermal gas expansion from a volume, while the second one considers heat transport along a fracture. For both examples, different equations of state have been utilized. The simulations have been performed on the scientific software platform OpenGeoSys. The difference among the particular simulation results is significant. Apparently small errors in the density function can cause considerably different results of otherwise identical simulation setups.  相似文献   
112.
Abstract– Lunar meteorite Northeast Africa (NEA) 001 is a feldspathic regolith breccia. This study presents the results of electron microprobe and LA‐ICP‐MS analyses of a section of NEA 001. We identify a range of lunar lithologies including feldspathic impact melt, ferroan noritic anorthosite and magnesian feldspathic clasts, and several very‐low titanium (VLT) basalt clasts. The largest of these basalt clasts has a rare earth element (REE) pattern with light‐REE (LREE) depletion and a positive Euanomaly. This clast also exhibits low incompatible trace element (ITE) concentrations (e.g., <0.1 ppm Th, <0.5 ppm Sm), indicating that it has originated from a parent melt that did not assimilate KREEP material. Positive Eu‐anomalies and such low‐ITE concentrations are uncharacteristic of most basalts returned by the Apollo and Luna missions, and basaltic lunar meteorite samples. We suggest that these features are consistent with the VLT clasts crystallizing from a parent melt which was derived from early mantle cumulates that formed prior to the separation of plagioclase in the lunar magma ocean, as has previously been proposed for some other lunar VLT basalts. Feldspathic impact melts within the sample are found to be more mafic than estimations for the composition of the upper feldspathic lunar crust, suggesting that they may have melted and incorporated material from the lower lunar crust (possibly in large basin‐forming events). The generally feldspathic nature of the impact melt clasts, lack of a KREEP component, and the compositions of the basaltic clasts, leads us to suggest that the meteorite has been sourced from the Outer‐Feldspathic Highlands Terrane (FHT‐O), probably on the lunar farside and within about 1000 km of sources of both Low‐Ti and VLT basalts, the latter possibly existing as cryptomaria deposits.  相似文献   
113.
The Garson Ni–Cu–platinum group element deposit is a deformed, overturned, low Ni tenor contact-type deposit along the contact between the Sudbury Igneous Complex (SIC) and stratigraphically underlying rocks of the Huronian Supergroup in the South Range of the 1.85-Ga Sudbury structure. The ore bodies are coincident with steeply south-dipping, north-over-south D1 shear zones, which imbricated the SIC, its ore zones, and underlying Huronian rocks during mid-amphibolite facies metamorphism. The shear zones were reactivated as south-over-north, reverse shear zones during D2 at mid-greenschist facies metamorphism. Syn-D2 metamorphic titanite yields an age of 1,849?±?6 Ma, suggesting that D1 and D2 occurred immediately after crystallization of the SIC during the Penokean Orogeny. The ore bodies plunge steeply to the south parallel to colinear L1 and L2 mineral lineations, indicating that the geometry of the ore bodies are strongly controlled by D1 and D2. Sulfide mineralization consists of breccia ores, with minor disseminated sulfides hosted in norite, and syn-D2 quartz–calcite–sulfide veins. Mobilization by ductile plastic flow was the dominant mechanism of sulfide/metal mobilization during D1 and D2, with additional minor hydrothermal mobilization of Cu, Fe, and Ni by hydrothermal fluids during D2. Metamorphic pentlandite overgrows a S1 ferrotschermakite foliation in D1 deformed ore zones. Pentlandite was exsolved from recrystallized polygonal pyrrhotite grains after cessation of D1, which resulted in randomly distributed large pentlandite grains and randomly oriented pentlandite loops along the grain boundaries of polygonal pyrrhotite within the breccia ore. It also overgrows a S2 chlorite foliation in D2 shear zones. Pyrrhotite recrystallized and was flattened during D2 deformation of breccia ore along narrow shear zones. Exsolution of pentlandite loops along the grain boundaries of these flattened grains produced a pyrrhotite–pentlandite layering that is not observed in D1 deformed ore zones. The overprinting of the two foliations by pentlandite and exsolution of pentlandite along the grain boundaries of flattened pyrrhotite grains suggest that the Garson ores reverted to a metamorphic monosulfide solid solution at temperatures ranging between 550 and 600 °C during D1 and continued to deform as a monosulfide solid solution during D2.  相似文献   
114.
We investigated the modern distribution of fossil midges within a dimictic lake and explored downcore patterns of inferred lake depths over the last 2000 years from previously published proxies. Modern midge distribution within Gall Lake showed a consistent and predictable pattern related to the lake-depth gradient with recognizable assemblages characteristic of shallow-water, mid-depth and profundal environments. Interpretations of downcore changes in midge assemblages, in conjunction with quantitative lake-depth inferences across a priori defined (based on diatom data) ~ 500-yr wet and dry periods, demonstrated that both invertebrate and algal assemblages exhibited similar timing and nature of ecological responses. Midges were quantified by their relative abundance, concentrations and an index of Chaoborus to chironomids, and all showed the greatest differences between the wet and dry periods. During the low lake-level period of the Medieval Climate Anomaly (MCA: AD 900 to 1400), profundal chironomids declined, shallow-water and mid-depth chironomids increased, chironomid-inferred lake level declined and the Chaoborus-to-chironomid index decreased. The coherence between multiple trophic levels provides strong evidence of lower lake levels in Gall Lake during the MCA.  相似文献   
115.
Marine Geophysical Research - Gas hydrate is regarded as a kind of important energy resource in the recent decades. The identification of gas hydrate is a hot issue for researchers all over the...  相似文献   
116.
This special feature: Genetic Structure and Adaptation in Coastal Ecosystems emphasizes the importance of research focused on population genetic structure and evolutionary change for understanding estuarine and coastal communities. Many studies have examined the effect of environmental gradients on community-level patterns in estuarine habitats; however, relatively little is known about the role of genetically based adaptation (the heritable response to these environmental gradients) in these organisms. This special feature presents 11 studies that use a variety of approaches including ecophysiology, ecological genetics, molecular markers, and patterns of gene expression occurring within these populations. These studies provide examples of the role of genetic diversity and adaptation across a diversity of estuarine and coastal environments, and highlight the temporal and spatial scales at which adaptation impinges upon management. This collection of papers is especially timely, given the increasing importance of understanding and predicting the response to global climate change in order to effectively manage these communities.  相似文献   
117.
A detailed petrologic survey has been made of 17 basaltic chips (sized between 1 and 10 mm) from the 12003 soil sample as part of an ongoing study of basaltic diversity at the Apollo 12 landing site. An attempt has been made to classify these samples according to the well‐established grouping of olivine, pigeonite, ilmenite, and feldspathic basalts. Particular attention has been paid to variations in major, minor, and trace element mineral chemistry (determined by electron microprobe analysis and laser ablation ICP‐MS), which may be indicative of particular basaltic suites and less susceptible to sampling bias than bulk sample characteristics. Examples of all three main (olivine, pigeonite, and ilmenite) basaltic suites have been identified within the 12003 soil. One sample is identified as a possible new addition to the feldspathic suite, which currently consists of only one other confirmed sample. Identification of additional feldspathic basalts strengthens the argument that they represent a poorly sampled basaltic flow local to the Apollo 12 site, rather than exotic material introduced to the site by impact mixing processes. Three samples are identified as representing members of one or two previously unrecognized basaltic suites.  相似文献   
118.
We present a new variable-step Gauss–Legendre implicit-Runge–Kutta-based approach for orbit and uncertainty propagation, VGL-IRK, which includes adaptive step-size error control and which collectively, rather than individually, propagates nearby sigma points or states. The performance of VGL-IRK is compared to a professional (variable-step) implementation of Dormand–Prince 8(7) (DP8) and to a fixed-step, optimally-tuned, implementation of modified Chebyshev–Picard iteration (MCPI). Both nearly-circular and highly-elliptic orbits are considered using high-fidelity gravity models and realistic integration tolerances. VGL-IRK is shown to be up to eleven times faster than DP8 and up to 45 times faster than MCPI (for the same accuracy), in a serial computing environment. Parallelization of VGL-IRK and MCPI is also discussed.  相似文献   
119.
We present spectra of Saturn's icy satellites Mimas, Enceladus, Tethys, Dione, Rhea, and Hyperion, 1.0-2.5 μm, with data extending to shorter (Mimas and Enceladus) and longer (Rhea and Dione) wavelengths for certain objects. The spectral resolution (R=λλ) of the data shown here is in the range 800-1000, depending on the specific instrument and configuration used; this is higher than the resolution (R=225 at 3 μm) afforded by the Visual-Infrared Mapping Spectrometer on the Cassini spacecraft. All of the spectra are dominated by water ice absorption bands and no other features are clearly identified. Spectra of all of these satellites show the characteristic signature of hexagonal H2O ice at 1.65 μm. We model the leading hemisphere of Rhea in the wavelength range 0.3-3.6 μm with the Hapke and the Shkuratov radiative transfer codes and discuss the relative merits of the two approaches to fitting the spectrum. In calculations with both codes, the only components used are H2O ice, which is the dominant constituent, and a small amount of tholin (Ice Tholin II). Tholin in small quantities (few percent, depending on the mixing mechanism) appears to be an essential component to give the basic red color of the satellite in the region 0.3-1.0 μm. The quantity and mode of mixing of tholin that can produce the intense coloration of Rhea and other icy satellites has bearing on its likely presence in many other icy bodies of the outer Solar System, both of high and low geometric albedos. Using the modeling codes, we also establish detection limits for the ices of CO2 (a few weight percent, depending on particle size and mixing), CH4 (same), and NH4OH (0.5 weight percent) in our globally averaged spectra of Rhea's leading hemisphere. New laboratory spectral data for NH4OH are presented for the purpose of detection on icy bodies. These limits for CO2, CH4, and NH4OH on Rhea are also applicable to the other icy satellites for which spectra are presented here. The reflectance spectrum of Hyperion shows evidence for a broad, unidentified absorption band centered at 1.75 μm.  相似文献   
120.
Knickpoints in bedrock streams are often interpreted as transient features generated by a change in boundary conditions. It is typically assumed that knickpoints propagate upstream with constant vertical velocities, though this relies on a stream being in erosional steady state (erosion rate equals rock uplift rate) prior to the knickpoint's formation. Recent modeling and field studies suggest that along-stream contrasts in rock erodibility perturb streams from erosional steady state. To evaluate how contrasts in rock erodibility might impact knickpoint interpretations, we test parameter space (rock erodibility, rock contact dip angle, change in rock uplift rate) in a one-dimensional (1D) bedrock stream model that has variable rock erodibility and produces a knickpoint with a sudden change in rock uplift rate. Upstream of a rock contact, the vertical velocity of a knickpoint generated by a change in rock uplift rate is strongly correlated with how the rock contact has previously perturbed erosion rates. These knickpoints increase vertical velocity upon propagating upstream of a hard over soft contact and decrease vertical velocity upon propagating upstream of a soft over hard contact. However, interactions with other transient perturbations produced by rock contacts make for nuances in knickpoint behavior. Rock contacts also influence the geometry of knickpoints, which can become particularly difficult to identify upstream of soft over hard rock contacts. Using our simulations, we demonstrate how a contact's along-stream horizontal migration rate and cross-contact change in rock strength control how much an upstream reach is perturbed from erosional steady state. When simulations include multiple contacts, the knickpoint is particularly prone to colliding with other transient perturbations and can even disappear altogether if rock contact dips are sufficiently shallow. Caution should be taken when analyzing stream profiles in areas with significant changes in rock strength, especially when rock contact dip angles are near the stream's slope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号