首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   37篇
  国内免费   9篇
测绘学   12篇
大气科学   51篇
地球物理   182篇
地质学   185篇
海洋学   48篇
天文学   168篇
综合类   2篇
自然地理   43篇
  2024年   3篇
  2022年   6篇
  2021年   11篇
  2020年   18篇
  2019年   8篇
  2018年   25篇
  2017年   19篇
  2016年   19篇
  2015年   23篇
  2014年   23篇
  2013年   29篇
  2012年   28篇
  2011年   32篇
  2010年   18篇
  2009年   41篇
  2008年   31篇
  2007年   26篇
  2006年   26篇
  2005年   28篇
  2004年   35篇
  2003年   19篇
  2002年   20篇
  2001年   17篇
  2000年   10篇
  1999年   12篇
  1998年   12篇
  1997年   4篇
  1996年   6篇
  1994年   3篇
  1993年   4篇
  1991年   3篇
  1990年   9篇
  1986年   7篇
  1985年   4篇
  1984年   7篇
  1983年   14篇
  1982年   11篇
  1981年   4篇
  1980年   8篇
  1979年   14篇
  1978年   5篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1969年   2篇
  1961年   2篇
排序方式: 共有691条查询结果,搜索用时 31 毫秒
31.
Surface sediment samples at 89 locations and 300-cm cores from 43 sites in the Mississippi Sound were examined for evidence of pollutant impact upon this coastal environment. Chemical variables determined were total organic carbon, Kjeldahl nitrogen, phenols, and hydrocarbons. Values of these pollutant indicators were about the same or lower in Gulf of Mexico samples compared to Missippi Sound sediments and considerably lower than those from rivers and bays emptying into the sound, indicating limited impact from sites of pollutant sources into the sound. Concentrations of sedimentary pollutants peaked in the Pascagoula River where levels of total organic carbon (TOC), Kjeldahl nitrogen (TKN), phenols, and hydrocarbons exceeded sound values by one to three orders of magnitude. Analysis of cores shows pollutant intrusion to sediment strata predating industrial development. The level of pollution varies from site to site but fortunately is only serious at localized sites within the sound.  相似文献   
32.
Taupor volcanic zone (TVZ) is the currently active volcanic arc and back-arc basin of the Taupo-Hikurangi arc-trench system, North Island, New Zealand. The volcanic arc is best developed at the southern (Tongariro volcanic centre) end of the TVZ, while on the eastern side of the TVZ it is represented mainly by dacite volcanoes, and in the Bay of Plenty andesite/dacite volcanoes occur on either side of the Whakatane graben. The back-arc basin is best developed in the central part of the TVZ and comprises bimodal rhyolite and high-alumina basalt volcanism. Widespread ignimbrite eruptions have occurred from this area in the past 0.6 Ma. Normal faults occur in both arc and back-arc basin. They are generally steeply dipping (>40°) and strike between 040° and 080°. In the back-arc basin, fault zones are en echelon and have the same trend as alignments of rhyolite domes and basalt vents. Open fissures have formed during historic earthquakes along some of the faults, and geodetic measurements on the north side of Lake Taupo suggest extension of 14±4 mm/year. In the Bay of Plenty and ML=6.3 earthquake occurred on 2 March 1987. Modelling of known structure in the area together with data derived from this earthquake suggests block faulting with faults dipping 45°±10° NW and a similar dip is suggested by seismic profiling of faults offshore of the Bay of Plenty where extension is estimated to be 5±2 mm/year. To the east of the TVZ, the North Island shear belt (NISB) is a zone of reverse-dextral, strike-slip faults, the surface expression of which terminates at the eastern end of the TVZ. On the opposite side of the TVZ in the offshore western Bay of Plenty and on line with the NISB is the Mayor Island fault belt. If the two fault belts were once continuous, as seems likely, strike-slip faults probably extend through the basement of the TVZ. When extension associated with the arc and back-arc basin is combined with these strike-slip faults, the resulting transtension provides a suitable tectonic environment for caldera formation and voluminous ignimbrite eruptions in the back-arc basin. The types of volcano in the TVZ are considered to be related to the source of magma and overlying crustal structure. Lavas of the arc are probably formed by a multistage process involving (1) subsolidus slab dehydration, (2) anatexis of the mantle wedge, (3) fractionation and minor crustal assimilation and (4) magma mixing. High-alumina basalts of the back-arc basin may be derived by partial melting of peridotite at the top of the mantle wedge, while rhyolitic magmas are thought to come from partial melting of lavas and subvolcanic reservoirs associated with the southern end of the Coromandel volcanic zone. Extreme thinning associated with transtension in the back-arc basin will favour the eruption of large-volume, gas-rich ignimbrites accompanied by caldera formation.  相似文献   
33.
The sediments of the Bauer Deep, an open ocean basin situated on the northwest Nazca Plate in the southeast Pacific, constitute a regional metalliferous deposit dominated by authigenic smectite.Two 2-metre long cores from the Bauer Deep were examined to investigate the nature and origin of the smectite.Infra-red and Mossbauer spectroscopy and wet chemical analysis (LiBO2 fusion) of isolated smectite, indicate the mineral is a Mg-rich, Al-rich nontronite. Oxygen isotopic compositions for isolated smectite are uniform and translate to a non-hydrothermal temperature of formation of about 3°C. SEM observations show an abundance of well-preserved biogenic opal in surface and near surface sediment but postburial dissolution and transformation of this phase to smectite is evident at depth.Smectite formation is the result of interaction between iron oxyhydroxide, ponded in the Bauer Deep following a hydrothermal origin at the adjacent East Pacific Rise, and biogenic opal. A reaction mechanism is proposed.Regional factors control smectite formation. In particular, formation is inhibited in areas of CaCO3 accumulation (topographic elevations) but favoured in areas of oxyhydroxide and opal ponding (topographic depressions).  相似文献   
34.
The distribution and mode of occurrence of zinc and lead have been examined in glacial soils developed over a complex Precambrian marble-paragneiss terrain in the Adirondack Mountains of New York. Based on distribution within the soil profiles, zinc is enriched in the B1 horizon of soils sampled over marble and lead is generally enriched in the A horizon, particularly in soils developed over paragneiss. Contrast is calculated using
, where is the mean of nA anomalous and nB background samples, and Sp is the pooled standard deviation) for zinc, lead and cold-extractable heavy metals in soils sampled over marble and paragneiss. The t-values indicate that the B1, soil horizon is the most suitable for sampling on a regular basis, even though lead is most concentrated in the A horizon.The distribution of zinc and lead among exchangeable, organic, iron-manganese oxide, clay, silt and sand fractions of B1 horizons from two anomalous and one background soil indicates that both zinc and lead are tied up principally in iron and manganese oxides. The anomalous samples exhibit zinc enrichment in the Fe-oxide digestion and high Mn/Fe ratios for the Mn-oxide digestion (as well as the total analysis). In terms of total contribution to the sample, significant proportions of zinc in the clastic fraction can be attributed to zinc substitution into clays plus the ineffective removal of Fe-oxides by the ammonium oxalate extraction procedure. Lead, on the other hand, occurs in significant concentrations in clay, silt and sand as well as Fe- and Mn-oxides, probably as a trace constituent in feldspars or adsorbed onto clay surfaces.  相似文献   
35.
Dacites form a relatively small proportion of lavas in the Taupo Volcanic Zone, New Zealand (5km3), and occur mainly on the eastern side. In this paper their origin is considered in terms of three processes: (a) partial melting of crustal rocks; (b) fractional crystallisation of basalt and andesite; and (c) sub-surface mixing of basic and acid magma. Modelling techniques are used to calculate the most acceptable degree of fractional crystallisation and magma mixing to fit major-element data, and these values are used to compare calculated and observed trace-element values. The success or failure of the model is determined by the closeness of the two sets of values. For partial-melt models, trace-element values alone are calculated by the batch-melting equation.Results indicate that White Island dacite can best be modelled by fractional crystallisation; Manawahe by fractional crystallisation plus limited crustal contamination; Maungaongaonga by partial melting of Western Basement greywacke, and Tauhara by partial melting of this greywacke together with minor mixing with a more basic magma. Results from Parekauau and Horohoro indicate that these lavas are unlikely to have formed by any of the processes examined.  相似文献   
36.
Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40°C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40°C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by mixing with non-thermal waters. During the summer months at times of maximum flow, selected hot springs exhibit their highest temperatures and maximum enrichments in most chemical constituents.Cation ratios and silica concentrations remain relatively constant through time for selected Utah thermal springs assuring the applicability of the geothermometer calculations regardless of the time of year. Geothermometer calculations utilizing either the quartz (no steam loss), chalcedony or Mg-corrected Na/K/Ca methods indicate that most thermal springs in Utah associated with normal faults have subsurface temperatures in the range of 25 to less than 120°C. This temperature range suggests fluid circulation is restricted to depths less than about three kilometers assuming an average thermal gradient of about 40°C/km.Thermodynamic calculations suggest that most thermal springs are oversaturated with respect to calcite, quartz, pyrophyllite, (Fe, Mg)-montmorillonite, microcline and hematite, and undersaturated with respect to anhydrite, gypsum, fluorite and anorthite. Chalcedony and cristobalite appear to be the only phases consistently at or near saturation in most waters. Theoretical evaluation of mixing on mineral saturation trends indicates that anhydrite and calcite become increasingly more undersaturated as cold, dilute groundwater mixes with a hot (150°C), NaCl-rich fluid. The evolution of these thermal waters issuing from faults appears to be one involving the dissolution of silicates such as feldspars and micas by CO2-enriched groundwaters that become more reactive with increasing temperature and/or time. Solution compositions plotted on mineral equilibrium diagrams trend from product phases such as kaolinite or montmorillonite toward reactant phases dominated by alkali feldspars.Isotopic compositions indicate that these springs are of local surface origin, either meteoric (low TDS, < 5000 mg/l) or connate ground water (high TDS, > 5000 mg/l). Deviations from the meteoric water line are the result of rock-water isotopic exchange, mixing or evaporation. Fluid source regions and residence times of selected thermal spring systems (Red Hill, Thermo) have been evaluated through the use of a σ D-contour map of central and western Utah. Ages for waters in these areas range from about 13 years to over 500 years. These estimates are comparable to those made for low-temperature hydrothermal systems in Iceland.  相似文献   
37.
Julia Mambo  Emma Archer 《Area》2007,39(3):380-391
The lack of reliable baseline information on land degradation is a hindrance towards its monitoring and mitigation. Of particular interest is the identification of areas susceptible to degradation. In this study, remote sensing and GIS technologies were applied to detect and map susceptibility to land degradation in Buhera district, in Save catchment, Zimbabwe. Data used included Landsat TM and ETM imagery for 1992 and 2002, agro-ecological zones, vegetation cover and population density. The study identified five preliminary categories of degradation susceptibility ranging from very high to low.  相似文献   
38.
A series of experiments and petrographic analyses have been run to determine the pre-eruption phase equilibria and ascent dynamics of dacitic lavas composing Black Butte, a dome complex on the flank of Mount Shasta, California. Major and trace element analyses indicate that the Black Butte magma shared a common parent with contemporaneously erupted magmas at the Shasta summit. The Black Butte lava phenocryst phase assemblage (20 v.%) consists of amphibole, plagioclase (core An77.5), and Fe–Ti oxides in a fine-grained (< 0.5 mm) groundmass of plagioclase, pyroxene, Fe–Ti oxides, amphibole, and cristobalite. The phenocryst assemblage and crystal compositions are reproduced experimentally between 890 °C and 910 °C, ≥ 300 MPa, XH2O = 1, and oxygen fugacity = NNO + 1. This study has quantified the extent of three crystallization processes occurring in the Black Butte dacite that can be used to discern ascent processes. Magma ascent rate was quantified using the widths of amphibole breakdown rims in natural samples, using an experimental calibration of rim development in a similar magma at relevant conditions. The majority of rims are 34 ± 10 μm thick, suggesting a time-integrated magma ascent rate of 0.004–0.006 m/s among all four dome lobes. This is comparable to values for effusive samples from the 1980 Mount St. Helens eruption and slightly faster than those estimated at Montserrat. A gap between the compositions of plagioclase phenocryst cores and microlites suggests that while phenocryst growth was continuous throughout ascent, microlite formation did not occur until significantly into ascent. The duration of crystallization is estimated using the magma reservoir depth and ascent rate, as determined from phase equilibria and amphibole rim widths, respectively. Textural analysis of the natural plagioclase crystals yields maximum growth rates of plagioclase phenocryst rims and groundmass microlites of 8.7 × 10− 8 and 2.5 × 10− 8 mm/s, respectively. These rates are comparable to values determined from time-sequenced samples of dacite erupted effusively from Mount St. Helens during 1980 and indicate that syneruptive crystallization processes were important during the Black Butte eruptive cycle.  相似文献   
39.
Previous research by our group (e.g., [Chem. Geol. 132 (1996) 25; Geochim. Cosmochim. Acta 64 (2000) 1363]) has shown that an aerobic Pseudomonas mendocina bacterium enhances Fe(hydr)oxide dissolution in order to obtain Fe under Fe-limited conditions. The P. mendocina is incapable of utilizing Fe as a terminal electron acceptor and requires several orders of magnitude lower Fe concentrations than do dissimilatory Fe reducing bacteria. The research reported here compared the effects of the P. mendocina on dissolution of well and poorly ordered Clay Minerals Society Source Clay kaolinites KGa-1b and KGa-2, respectively, under Fe-limited conditions. KGa-1b and KGa-2 contain 0.04 and 0.94 bulk wt.% Fe, respectively, and their surface Fe/Si atomic RATIOS=0.008 and 0.012. Following strong cleaning of the kaolinites in 5.8 M HCl at 85 °C, the surface Fe/Si atomic ratios decreased to 0.004 and 0.008, respectively. Both kaolinites also developed a Si-enriched surface precipitate upon strong cleaning.

Because the P. mendocina take up Fe, we could not measure Fe release from the kaolinite directly, but rather had to monitor it indirectly by comparing microbial populations sizes under Fe-limited growth conditions. We found that microbial growth on uncleaned, weakly cleaned, and strongly cleaned kaolinites increased with the amount of Fe readily available to organic ligands as estimated by dissolution in 0.001 M oxalate (pH 3). This suggests that it is the amount of readily accessible Fe that controls Fe acquisition and hence microbial growth. The trend is based on only a relatively small range of kaolinite Fe contents, and the research thus needs to be expanded to include kaolinites with a broader range of bulk and surface Fe concentrations.

Significant enhancement of Al release was observed in the presence of the bacteria, along with generally some enhancement of Si release. This enhancement of kaolinite dissolution could be related to an observed pH increase from 7–8 to 9 in the presence of the bacteria and/or to production of Al chelating agents. The P. mendocina produce a variety of organic exudates, including siderophores [Chem. Geol. 132 (1996) 25; Geomicrobiology (2001b)], and further studies into the effects of the siderophores on Al complexation and on kaolinite dissolution are ongoing.  相似文献   

40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号