首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   15篇
  国内免费   8篇
测绘学   5篇
大气科学   28篇
地球物理   89篇
地质学   157篇
海洋学   53篇
天文学   114篇
综合类   1篇
自然地理   56篇
  2023年   3篇
  2021年   5篇
  2020年   7篇
  2019年   6篇
  2018年   10篇
  2017年   6篇
  2016年   14篇
  2015年   10篇
  2014年   13篇
  2013年   24篇
  2012年   18篇
  2011年   17篇
  2010年   18篇
  2009年   23篇
  2008年   42篇
  2007年   17篇
  2006年   28篇
  2005年   13篇
  2004年   24篇
  2003年   12篇
  2002年   16篇
  2001年   11篇
  2000年   13篇
  1999年   9篇
  1998年   7篇
  1996年   5篇
  1995年   3篇
  1994年   12篇
  1993年   6篇
  1992年   11篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1984年   8篇
  1983年   8篇
  1982年   2篇
  1981年   4篇
  1980年   7篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   8篇
  1972年   4篇
  1968年   2篇
  1966年   3篇
排序方式: 共有503条查询结果,搜索用时 15 毫秒
481.
482.
483.
484.
Global positioning systems (GPS) have in recent years been increasingly used to monitor the deformations of large structures, particularly the deflections of long suspension bridges. When appropriately employed, and with the presence of a strong satellite geometry, GPS can supply timely and accurate structural deformation information. However, the three-dimensional (3-D) positioning accuracies in a local coordinate system are uneven. For instance, the vertical component of 3-D coordinates is less accurate than the horizontal component. In addition, GPS satellite availability tends to be a function of the latitude of the observation site and its surrounding obstructions. As a consequence, the accuracy of the north–south component is typically worse than that of the east–west component in mid-latitude areas (>45), and in some of the worst situations the horizontal positioning accuracy could even degrade to the same level as that of the vertical component. With such measurements it might not be possible to correctly interpret the real structural deformations. Furthermore, an insufficient number of satellites, caused by signal obstruction, could make it impossible to use GPS alone for kinematic positioning, even when integrated with other sensors such as triaxial accelerometers. With the aim of improving 3-D positioning accuracies for the monitoring of structural deflections, especially in vertical and northern directions, the optimal location selection of an array of ground-based pseudolites to augment GPS satellite geometry using an analytical simulation technique proposed by the authors is considered. Achievable 3-D positioning accuracies are estimated by simulating a real bridge deformation scenario using augmented transmitter geometry and compared with actual positioning accuracies calculated from the measurements gathered from a bridge trial. The results show that with an augmented satellite geometry and multipath mitigation it is possible to achieve uniform 3-D positioning accuracies of a few millimetres.  相似文献   
485.
486.
Surface ions move during the dissolution and growth of minerals. The present study investigates the density and the mobility of surface ions and the structure of the adsorbed water layer with changes in relative humidity (RH). The time evolution of the polarization force, which is induced by an electrically biased tip of an atomic force microscope, shows that the density and the mobility of surface ions increase with rising humidity, a finding which is consistent with increasing surface hydration. A marked change in the observations above 55% RH indicates a transition from a water layer formed by heteroepitaxial two-dimensional growth at low RH to one formed by multilayer three-dimensional growth at high RH. A comparison of the results of several rhombohedral carbonates (viz. CaCO3, FeCO3, ZnCO3, MgCO3, and MnCO3) shows that a long relaxation time of the polarization force at high RH is predictive of a rapid dissolution rate. This finding is rationalized by long lifetimes in terrace positions and hence greater opportunities for detachment of the ion to aqueous solution (i.e., dissolution). Our findings on the density and the mobility of surface ions therefore help to better constrain mechanistic models of hydration, ion exchange, and dissolution/growth.  相似文献   
487.
Abstract:  This paper examines the culturally specific experiences of belonging within Oruāmo/Beachhaven, a suburb in North Shore City. In-depth interviews with 32 caregivers of young children expose the fact that the ethnic groups represented – Māori, Samoan and Pākehā– vary in their uses and understandings of, as well as feelings for, residential neighbourhood. Examination of the themes of natural environment, social relations, continuity of residence, facilities, organisations and place transformation reveal that, while representatives of all groups had views on these matters, there was a variable degree of engagement with and priority afforded to these concerns.  相似文献   
488.
Ontario Lacus is the largest lake of the whole southern hemisphere of Titan, Saturn’s major moon. It has been imaged twice by each of the Cassini imaging systems (Imaging Science Subsystem (ISS) in 2004 and 2005, Visual and Infrared Mapping Spectrometer (VIMS) in 2007 and 2009 and RADAR in 2009 and 2010). We compile a geomorphological map and derive a “hydrogeological” interpretation of Ontario Lacus, based on a joint analysis of ISS, VIMS and RADAR SAR datasets, along with the T49 altimetric profile acquired in December 2008. The morphologies observed on Ontario Lacus are compared to landforms of a semi-arid terrestrial analog, which resembles Titan’s lakes: the Etosha Pan, located in the Owambo Basin (Namibia). The Etosha Pan is a flat-floored depression formed by dissolution, under semi-arid conditions, of a surface evaporitic layer (calcretes) controlled by groundwater vertical motions. We infer that Ontario Lacus is an extremely flat and shallow depression lying in an alluvial plain surrounded by small mountain ranges under climatic conditions similar to those of terrestrial semi-arid regions. Channels are seen in the southern part of Ontario Lacus in VIMS and RADAR data, acquired at a 2-years time interval. Their constancy in location with time implies that the southern portion of the depression is probably not fully covered by a liquid layer at the time of the observations, and that they most probably run on the floor of the depression. A shallow layer of surface liquids, corresponding to the darkest portions of the RADAR images, would thus cover about 53% of the surface area of the depression, of which almost 70% is located in its northern part. These liquid-covered parts of the depression, where liquid ethane was previously identified, are interpreted as topographic lows where the “alkanofer” raises above the depression floor. The rest of the depression, and mostly its southern part, is interpreted as a flat and smooth exposed floor, likely composed of a thick and liquid-saturated coating of photon-absorbing materials in the infrared. This hypothesis could explain its dark appearance both in the infrared and radar data and the persistence of channels seen on the depression floor over the time. Shorelines are observed on the border of Ontario Lacus suggesting past high-stand levels of the alkanofer table. The analogy with the Etosha Pan suggests that Ontario Lacus’ depression developed at the expense of a soluble layer covering the region. Dissolution of this layer would be controlled by vertical motions of the alkanofer table over the time. During flooding events, liquid hydrocarbons covering the depression floor would dissolve the surface layer, increasing progressively the diameter of the depression on geological timescales. During drought episodes, liquid hydrocarbons of the underground alkanofer would evaporate, leading to crystallization of “evaporites” in the pores and at the surface of the substratum, and to the formation of the regional soluble layer. The presence of specific landforms (lunette dunes or evaporites) is compatible with such evaporitic regional settings. Alternatively, but not exclusively, the surface soluble layer might have formed by accumulation on the ground of soluble compounds formed in the atmosphere.  相似文献   
489.
Saturn's Moon Titan has a thick atmosphere with a meteorological cycle. We report on the evolution of the giant cloud system covering its north pole using observations acquired by the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft. A radiative transfer model in spherical geometry shows that the clouds are found at an altitude between 30 and 65 km. We also show that the polar cloud system vanished progressively as Titan approached equinox in August 2009, revealing at optical wavelengths the underlying sea known as Kraken Mare. This decrease of activity suggests that the north-polar downwelling has begun to shut off. Such a scenario is compared with the Titan global circulation model of Rannou et al. (2006), which predicts a decrease of cloud coverage in northern latitudes at the same period of time.  相似文献   
490.
Senkyo is an equatorial plain on Titan filled with dunes and surrounded by hummocky plateaus. During the Titan targeted flyby T61 on August 25, 2009, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed a circular feature, centered at 5.4° N and 341°W, that superimposes the dune fields and a bright plateau. This circular feature, which has been named Paxsi by the International Astronomical Union, is 120±10 km in diameter (measured from the outer edge of the crater rim) and exhibits a central bright area that can be interpreted as the central peak or pit of an impact crater. Although there are only a handful of certain impact craters on Titan, there are two other craters that are of similar size to this newly discovered feature and that have been studied by VIMS: Sinlap (Le Mouélic et al., 2008) and Selk (Soderblom et al., 2010). Sinlap is associated with a large downwind, fan-like feature that may have been formed from an impact plume that rapidly expanded and deposited icy particles onto the surface. Although much of the surrounding region is covered with dunes, the plume region is devoid of dunes. The formation process of Selk also appears to have removed (or covered up) dunes from parts of the adjacent dune-filled terrain. The circular feature on Senkyo is quite different: there is no evidence of an ejecta blanket and the crater itself appears to be infilled with dune material. The rim of the crater appears to be eroded by fluvial processes; at one point the rim is breached. The rim is unusually narrow, which may be due to mass wasting on its inside and subsequent infill by dunes. Based on these observations, we interpret this newly discovered feature to be a more eroded crater than both Sinlap and Selk. Paxsi may have formed during a period when Titan was warmer and more ductile than it is currently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号