首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   10篇
  国内免费   6篇
测绘学   2篇
大气科学   17篇
地球物理   108篇
地质学   91篇
海洋学   67篇
天文学   39篇
综合类   1篇
自然地理   24篇
  2021年   3篇
  2020年   2篇
  2019年   8篇
  2018年   5篇
  2017年   6篇
  2016年   8篇
  2015年   13篇
  2014年   14篇
  2013年   19篇
  2012年   11篇
  2011年   13篇
  2010年   20篇
  2009年   29篇
  2008年   16篇
  2007年   20篇
  2006年   25篇
  2005年   13篇
  2004年   12篇
  2003年   7篇
  2002年   8篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1970年   2篇
  1961年   2篇
排序方式: 共有349条查询结果,搜索用时 31 毫秒
261.
Flow fields in Shizugawa Bay on the Sanriku ria coast, which faces the Pacific Ocean, were investigated using hydrographic observations for the purpose of understanding oceanographic conditions and the process of water exchanges in the bay after the 2011 earthquake off the Pacific coast of Tohoku. In spring to summer, density-driven surface outflow is part of estuarine circulation and is induced by a pressure gradient force under larger longitudinal gradients in density along with lower salinity water in the innermost part of the bay, regardless of wind forcing. In winter to summer, another density-driven current with a thermal structure is induced by a pressure gradient force under the smaller longitudinal density gradients in calm wind conditions. Particularly in winter, Tsugaru Warm Current water can be transported in the surface layer inside the bay. Wind-driven bay-scale circulation with downwind and upwind currents in the surface and deeper layers, respectively, is induced by strong longitudinal wind forcing under the smaller longitudinal density gradients, irrespective of season. Particularly in fall to spring, this circulation can cause the intrusions of oceanic water associated with Oyashio water and Tsugaru Warm Current water in the deeper layer. These results suggest that wind- and density-driven currents can produce the active exchange of water from inside and outside the bay throughout the year.  相似文献   
262.
Real-time generation and distribution of the New Generation Sea Surface Temperature for Open Ocean (NGSST-O) product began in September 2003 as a demonstration operation of the Global Ocean Data Assimilation Experiment (GODAE) High-Resolution Sea Surface Temperature Pilot Project. Satellite sea surface temperature (SST) observations from infrared radiometers (AVHRR, MODIS) and a microwave radiometer (AMSR-E) are objectively merged to generate the NGSST-O product, which is a quality-controlled, cloud-free, high-spatial-resolution (0.05° gridded), wide-coverage (13–63° N, 116–166° E), daily SST digital map. The NGSST-O demonstration operation system has been developed in cooperation with the Japanese Space Agency (JAXA) and has produced six years of continuous data without gaps. Comparison to in situ SSTs measured by drifting buoys indicates that the root mean-square error of NGSST-O has been kept at approximately 0.9°C.  相似文献   
263.
264.
Vertical plant area density profiles of wheat (Triticum aestivum L.) canopy at different growth stages (tillering, stem elongation, flowering, and ripening stages) were estimated using high-resolution portable scanning lidar based on the voxel-based canopy profiling method. The canopy was scanned three-dimensionally by laser beams emitted from several measuring points surrounding the canopy. At the ripening stage, the central azimuth angle was inclined about 23° to the row direction to avoid obstruction of the beam into the lower canopy by the upper part. Plant area density profiles were estimated, with root mean square errors of 0.28–0.79 m2 m?3 at each growth stage and of 0.45 m2 m?3 across all growth stages. Plant area index was also estimated, with absolute errors of 4.7%–7.7% at each growth stage and of 6.1% across all growth stages. Based on lidar-derived plant area density, the area of each type of organ (stem, leaves, ears) per unit ground area was related to the actual dry weight of each organ type, and regression equations were obtained. The standard errors of the equations were 4.1 g m?2 for ears and 26.6 g m?2 for stems and leaves. Based on these equations, the estimated total dry weight was from 63.3 to 279.4 g m?2 for ears and from 35.8 to 375.3 g m?2 for stems and leaves across the growth stages. Based on the estimated dry weight at ripening and the ratio of carbon to dry weight in wheat plants, the carbon stocks were 76.3 g C m?2 for grain, 225.0 g C m?2 for aboveground residue, and 301.3 g C m?2 for all aboveground organs.  相似文献   
265.
An historical objective analysis of subsurface temperature and salinity was carried out on a monthly basis from 1945 to 2003 using the latest observational databases and a sea surface temperature analysis. In addition, steric sea level changes were mainly examined using outputs of the objective analyses. The objective analysis is a revised version of Ishii et al. and is available at 16 levels in the upper 700 m depth. Artificial errors in the previous analysis during the 1990s have been worked out in the present analysis. The steric sea level computed from the temperature analysis has been verified with tide gauge observations and TOPEX/Poseidon sea surface height data. A correction for crustal movement is applied for tide gauge data along the Japanese coast. The new analysis is suitable for the discussion of global warming. Validation against the tide gauge reveals that the amplitude of thermosteric sea level becomes larger and the agreement improves in comparison with the previous analysis. A substantial part of local sea level rise along the Japanese coast appears to be explained by the thermosteric effect. The thermal expansion averaged in all longitudes from 60°S to 60°N explains at most half of recent sea level rise detected by satellite observation during the last decade. Considerable uncertainties remain in steric sea level, particularly over the southern oceans. Temperature changes within MLD make no effective contribution to steric sea level changes along the Antarctic Circumpolar Current. According to statistics using only reliable profiles of the temperature and salinity analyses, salinity variations are intrinsically important to steric sea level changes in high latitudes and in the Atlantic Ocean. Although data sparseness is severe even in the latest decade, linear trends of global mean thermosteric and halosteric sea level for 1955 to 2003 are estimated to be 0.31 ± 0.07 mm/yr and 0.04 ± 0.01 mm/yr, respectively. These estimates are comparable to those of the former studies.  相似文献   
266.
The importance of the diurnal variability of sea surface temperature (SST) on air-sea interaction is now being increasingly recognized. This review synthesizes knowledge of the diurnal SST variation, mainly paying attention to its impact on the atmosphere or the ocean. Diurnal SST warming becomes evident when the surface wind is weak and insolation is strong. Recent observations using satellite data and advanced instruments have revealed that a large diurnal SST rise occurs over wide areas in a specific season, and in an extreme case the diurnal amplitude of SST exceeds 5 K. The large diurnal SST rise can lead to an increase in net surface heat flux from the ocean of 50–60 Wm−2 in the daytime. The temporal mean of the increase exceeds 10 Wm−2, which will be non-negligible for the atmosphere. A few numerical experiments have indicated that the diurnal SST variation can modify atmospheric properties over the Pacific warm pool or a coastal sea, but the processes underlying the modification have not yet been investigated in detail. Furthermore, it has been shown that the diurnal change of ocean mixing process near the surface must be considered correctly in order to reproduce SST variations on an intraseasonal scale in a numerical model. The variation of mixed-layer properties on the daily scale is nonlinearly related to the intraseasonal variability. The mixed-layer deepening/shoaling process on the daily scale will also be related to biological and material circulation processes.  相似文献   
267.
We estimated the composition of two food sources for the cultured pearl oyster Pinctada fucata martensii using stable isotopes and stomach content analysis in the coastal areas of the Uwa Sea, Japan. The δ13C values of oysters (−17.5 to −16.8‰) were intermediate between that of particulate organic matter (POM, −20.2 to −19.1‰) and attached microalgae on pearl cages (−13.0‰). An isotope mixing model suggested that oysters were consuming 78% POM (mainly phytoplankton) and 22% attached microalgae. The attached microalgal composition of the stomach content showed a strong resemblance to the composition of that estimated through the isotope mixing model, suggesting preferential utilization of specific components is unlikely in this species. These results indicate that P. fucata martensii feed on a mixture of phytoplankton and attached microalgae, and that the attached microalgae on pearl cages can serve as an important additional food source.  相似文献   
268.
Total dissolvable iron, manganese and aluminum distributions in upper waters were determined in the western South Pacific, Solomon Sea, Coral Sea, and Tasman Sea. In these oceanic regions, the surface aluminum distributions well reflect the atmospheric deposition pattern of mineral dust in the western South Pacific reported previously. Surface manganese distributions derive mainly from lateral transportation from the coastal sediments of western tropical islands. Compared to Mn and Al, the Fe distributions reflect the nutrient cycle in upper waters. Iron limitation over the vast South Pacific, as revealed by physiological features of phytoplankton, seems to be caused by low atmospheric dust deposition and low Fe:N ratios in deep waters. In the western South Pacific, with its unique geographic and oceanographic settings, the local sources of trace metals might considerably affect their biogeochemical cycles.  相似文献   
269.
We report two new eclogite localities (at Kanayamadani and Shinadani) in the high‐P (HP) metamorphic rocks of the Omi area in the western most region of Niigata Prefecture, Japan, which form part of the Hida Gaien Belt, and determine metamorphic conditions and pressure–temperature (PT) paths. The metamorphic evolution of the eclogites is characterized by a tight hairpin‐shaped PT path from prograde epidote–blueschist facies to peak eclogite facies and then retrograde blueschist facies. The prograde metamorphic stage is characterized by various amphibole (winchite, barroisite, glaucophane) inclusions in garnet, whereas the peak eclogite facies assemblage is characterized by omphacite, garnet, phengite and rutile. Peak PT conditions of the eclogites were estimated to be ~600°C and up to 2.0 GPa by conventional cation‐exchange thermobarometry, Ti‐in‐zircon thermometry and quartz inclusion Raman barometry respectively. However, the Raman spectra of carbonaceous material thermometry of metapelites associated with the eclogites gave lower peak temperatures, possibly due to metamorphism at different conditions before being brought together during exhumation. The blueschist facies overprint following the peak of metamorphism is recognized by the abundance of glaucophane in the matrix. Zircon grains in blueschist facies metasedimentary samples from two localities adjacent to the eclogites have distinct oscillatory‐zoned cores and overgrowth rims. Laser ablation inductively coupled plasma mass spectrometry U–Pb ages of the detrital cores yield a wide range between 3,200 and 400 Ma, with a peak at 600–400 Ma. In the early Palaeozoic, proto‐Japan was located along the continental margin of the South China craton, providing the source of the older population of detrital zircon grains (3,200–600 Ma) deposited in the trench‐fill sediments. In addition, subduction‐related magmatism c. 500–400 Ma is recorded in the crust below proto‐Japan, which might have been the source for the younger detrital zircon grains. The peak metamorphic age was constrained by SHRIMP dating of the overgrowth rims, yielding Tournaisian ages of 347 ± 4 Ma, suggesting subduction in the early Carboniferous. Our results provide clear constraints on the initiation of subduction, accretion and the development of an arc‐trench system along the active continental margin of the South China craton and help to unravel the Palaeozoic tectonic history of proto‐Japan.  相似文献   
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号